Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;217(12):1301-14.
doi: 10.1016/j.imbio.2012.08.270. Epub 2012 Aug 9.

Identification of novel markers of alternative activation and potential endogenous PPARγ ligand production mechanisms in human IL-4 stimulated differentiating macrophages

Affiliations
Free article

Identification of novel markers of alternative activation and potential endogenous PPARγ ligand production mechanisms in human IL-4 stimulated differentiating macrophages

Zsolt Czimmerer et al. Immunobiology. 2012 Dec.
Free article

Abstract

We analyzed global gene expression profiles of IL-4 induced alternatively activated as well as IFNγ+TNFα stimulated classically activated human monocyte derived macrophages and identified novel IL-4 regulated alternative activation marker genes including MS4A4A, SLA, CD180, and ENPP2. Transcription factor prediction analysis of IL-4 regulated genes suggested that the regulated genes are involved in a complex regulation of lipid metabolism, defense against cell metabolism derived reactive oxygen species, and basal expression of inflammation linked genes. Both an in silico transcription activation prediction as well as experimental data suggested the presence of alternative macrophage activation specific endogenous PPARγ ligand producing mechanisms. We found the induction of three enzymes whose activity can potentially generate endogenous PPARγ ligands in an IL-4 dependent manner. These are MAOA, ENPP2, and ALOX15 producing 5-methoxy-indole acetate, lysophosphatidic acid (LPA) and 13-hydroxyoctadienoic acid (13-HODE), and/or 15-hydroxyeicosatetraenoic acid (15-HETE), respectively. Our data suggest that global gene expression profiling, combined with computational transcription activity prediction, can lead to identification of transcriptional networks that underpin cellular subtype specification.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources