Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;59(12):3405-11.
doi: 10.1109/TBME.2012.2216880. Epub 2012 Aug 31.

On the effect of body capacitance to ground in tetrapolar bioimpedance measurements

Affiliations

On the effect of body capacitance to ground in tetrapolar bioimpedance measurements

Carles Aliau-Bonet et al. IEEE Trans Biomed Eng. 2012 Dec.

Abstract

Tetrapolar bioimpedance measurements on subjects have long been suspected of being affected by stray capacitance between the subjects' body and ground. This paper provides a circuit model to analyze that effect in the frequency range from 100 Hz to 1 MHz in order to identify the relevant parameters when impedance is measured by applying a voltage and measuring both the resulting current and the potential difference between two points on the surface of the volume conductor. The proposed model includes the impedance of each electrode and the input impedance of the differential voltage amplifier. When common values for the circuit parameters are assumed, the simplified model predicts: 1) a frequency-independent gain (scale factor) error; 2) inductive artifacts, that is, the measured impedance increases with increasing frequency and may include positive angle phases; and 3) resonance that can affect well below 1 MHz. In addition to the stray capacitance to ground, relevant parameters that determine those errors are the capacitance of the "low-current" electrode and the input capacitance of the differential voltage amplifier. Experimental results confirm those theoretical predictions and show effects from several additional resonances above 1 MHz that also depend on body capacitance to ground.

PubMed Disclaimer

Publication types

LinkOut - more resources