Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;372(1-2):35-45.
doi: 10.1007/s11010-012-1443-3. Epub 2012 Sep 6.

MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN

Affiliations

MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN

Zhi-Li Liu et al. Mol Cell Biochem. 2013 Jan.

Abstract

MicroRNAs (miRNAs) regulate gene expression by binding to target sites and initiating translational repression and/or mRNA degradation. In our previous study, we have shown that expression of serum microRNA (miR)-21 is correlated with TNM stage and lymph node metastasis and might be an independent prognostic factor for NSCLC patients. However, the roles of miR-21 overexpression in NSCLC development are still unclear. The purpose of this study is to investigate the effect of miR-21 and determine whether miR-21 can be a therapeutic target for human NSCLC. Taqman real-time quantitative RT-PCR assay was performed to detect miR-21 expression in NSCLC cell lines and tissues. Next, the effects of miR-21 expression on NSCLC cell characteristics including growth, invasion, and chemo- or radioresistance were also determined. Results showed that miR-21 is commonly upregulated in NSCLC cell lines and tissues with important functional consequences. In addition, we found that anti-miR-21 could significantly inhibit growth, migration and invasion, and reverse chemo- or radioresistance of NSCLC cells, while miR-21 mimics could increase growth, promote migration and invasion, and enhance chemo- or radioresistance of NSCLC cells. Meanwhile, miR-21 mimics could inhibit expression of PTEN mRNA and protein and the luciferase activity of a PTEN 3'-untranslated region (UTR)-based reporter construct in A549 cells, while anti-miR-21 could increase expression of PTEN mRNA and protein and the luciferase activity of a PTEN 3'-UTR-based reporter construct in A549 cells. Furthermore, overexpression of PTEN could mimic the same effects of anti-miR-21 in NSCLC cells, and siRNA-mediated downregulation of PTEN could rescue the effects on NSCLC cells induced by anti-miR-21. Taken together, these results provide evidence to show the promotion role of miR-21 in NSCLC development through modulation of the PTEN signaling pathway.

PubMed Disclaimer

References

    1. Dev Biol. 2007 Feb 1;302(1):1-12 - PubMed
    1. J Biol Chem. 2011 Nov 11;286(45):39172-8 - PubMed
    1. Semin Oncol. 2011 Dec;38(6):781-7 - PubMed
    1. Chin J Cancer. 2011 Jun;30(6):407-14 - PubMed
    1. Cell Res. 2008 Mar;18(3):350-9 - PubMed

Publication types

MeSH terms

LinkOut - more resources