Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Feb;60(1):2-21.
doi: 10.1111/zph.12000. Epub 2012 Sep 7.

Ecology of zoonotic infectious diseases in bats: current knowledge and future directions

Affiliations
Review

Ecology of zoonotic infectious diseases in bats: current knowledge and future directions

D T S Hayman et al. Zoonoses Public Health. 2013 Feb.

Abstract

Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.

PubMed Disclaimer

References

    1. Allen, L. C. , Turmelle A. S., Widmaier E. P., Hristov N. I., Mccracken G. F., and Kunz T. H., 2011: Variation in physiological stress between bridge‐ and cave‐roosting Brazilian free‐tailed bats. Conserv. Biol. 25, 374–381. - PubMed
    1. Altizer, S. , Dobson A., Hosseini P., Hudson P., Pascual M., and Rohani P., 2006: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484. - PubMed
    1. Altizer, S. , Bartel R., and Han B. A., 2011: Animal migration and infectious disease risk. Science 331, 296–302. - PubMed
    1. Amengual, B. , Bourhy H., Lopez‐Roig M., and Serra‐Cobo J., 2007: Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS One 2, e566. - PMC - PubMed
    1. Anderson, R. M. , and May R. M., 1979: Population biology of infectious diseases: Part I. Nature 280, 361–367. - PubMed

Publication types