Colorimetric protein sensing using catalytically amplified sensor arrays
- PMID: 22961696
- PMCID: PMC3514658
- DOI: 10.1002/smll.201201549
Colorimetric protein sensing using catalytically amplified sensor arrays
Abstract
Catalytically active iron oxide nanoparticles are used as recognition elements and signal amplifiers for the array-based colorimetric sensing of proteins. Interactions between cationic monolayers on the Fe(3) O(4) NPs and analyte proteins differentially modulates the peroxidase-like activity of Fe(3) O(4) NPs, affording catalytically amplified colorimetric signal patterns that enable the detection and identification of proteins at 50 nM.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures



Similar articles
-
Multifunctional Janus hematite-silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose.ACS Appl Mater Interfaces. 2015 Jul 22;7(28):15395-402. doi: 10.1021/acsami.5b03423. Epub 2015 Jul 7. ACS Appl Mater Interfaces. 2015. PMID: 26110779
-
Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity.Talanta. 2025 May 15;287:127629. doi: 10.1016/j.talanta.2025.127629. Epub 2025 Jan 27. Talanta. 2025. PMID: 39874792
-
Fe3O4 Nanozymes with Aptamer-Tuned Catalysis for Selective Colorimetric Analysis of ATP in Blood.Anal Chem. 2019 Nov 19;91(22):14737-14742. doi: 10.1021/acs.analchem.9b04116. Epub 2019 Oct 29. Anal Chem. 2019. PMID: 31622079
-
Recent developments in colorimetric immunoassays using nanozymes and plasmonic nanoparticles.Crit Rev Biotechnol. 2019 Feb;39(1):50-66. doi: 10.1080/07388551.2018.1496063. Epub 2018 Sep 9. Crit Rev Biotechnol. 2019. PMID: 30198348 Review.
-
A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification.Mikrochim Acta. 2023 Oct 25;190(11):451. doi: 10.1007/s00604-023-06021-5. Mikrochim Acta. 2023. PMID: 37880465 Review.
Cited by
-
Charged poly(N-isopropylacrylamide) nanogels for use as differential protein receptors in a turbidimetric sensor array.Analyst. 2017 Aug 21;142(17):3183-3193. doi: 10.1039/c7an00787f. Analyst. 2017. PMID: 28745734 Free PMC article.
-
Nanostructures for peroxidases.Front Mol Biosci. 2015 Sep 3;2:50. doi: 10.3389/fmolb.2015.00050. eCollection 2015. Front Mol Biosci. 2015. PMID: 26389124 Free PMC article. Review.
-
Machine learning-based sensor array: full and reduced fluorescence data for versatile analyte detection based on gold nanocluster as a single probe.Anal Bioanal Chem. 2022 Dec;414(29-30):8365-8378. doi: 10.1007/s00216-022-04372-1. Epub 2022 Oct 25. Anal Bioanal Chem. 2022. PMID: 36280626
-
A Multi-Fluorescent DNA/Graphene Oxide Conjugate Sensor for Signature-Based Protein Discrimination.Sensors (Basel). 2017 Sep 23;17(10):2194. doi: 10.3390/s17102194. Sensors (Basel). 2017. PMID: 28946622 Free PMC article.
-
Universal sensor array for highly selective system identification using two-dimensional nanoparticles.Chem Sci. 2017 Aug 1;8(8):5735-5745. doi: 10.1039/c7sc01522d. Epub 2017 Jun 16. Chem Sci. 2017. PMID: 28989614 Free PMC article.
References
-
- Mullenix MC, Wiltshire S, Shao WP, Kitos G, Schweitzer B. Clin. Chem. 2001;47:1926–1929.
-
- Kingsmore SF, Patel DD. Curr. Opin. Biotechnol. 2003;14:74–81. - PubMed
-
- Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E. Biosens. Bioelectron. 2007;22:2377–2381. - PubMed
-
- Anderson NL, Anderson NG. Mol. Cell. Proteomics. 2002;1:845–867. - PubMed
-
- Hartwell L, Mankoff D, Paulovich A, Ramsey S, Swisher E. Nat. Biotechnol. 2006;24:905–908. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources