Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec 15;21(24):5329-43.
doi: 10.1093/hmg/dds369. Epub 2012 Sep 8.

Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

Daniel I Chasman  1 Christian FuchsbergerCristian PattaroAlexander TeumerCarsten A BögerKarlhans EndlichMatthias OldenMing-Huei ChenAdrienne TinDaniel TaliunMan LiXiaoyi GaoMathias GorskiQiong YangClaudia HundertmarkMeredith C FosterConall M O'SeaghdhaNicole GlazerAaron IsaacsChing-Ti LiuAlbert V SmithJeffrey R O'ConnellMaksim StruchalinToshiko TanakaGuo LiAndrew D JohnsonHinco J GiermanMary F FeitosaShih-Jen HwangElizabeth J AtkinsonKurt LohmanMarilyn C CornelisAsa JohanssonAnke TönjesAbbas DehghanJean-Charles LambertElizabeth G HollidayRossella SoriceZoltan KutalikTerho LehtimäkiTõnu EskoHarshal DeshmukhSheila UliviAudrey Y ChuFederico MurgiaStella TrompetMedea ImbodenStefan CoassinGiorgio PistisCARDIoGRAM ConsortiumICBP ConsortiumCARe ConsortiumWTCCC2Tamara B HarrisLenore J LaunerThor AspelundGudny EiriksdottirBraxton D MitchellEric BoerwinkleHelena SchmidtMargherita CavalieriMadhumathi RaoFrank HuAyse DemirkanBen A OostraMariza de AndradeStephen T TurnerJingzhong DingJeanette S AndrewsBarry I FreedmanFranco GiulianiniWolfgang KoenigThomas IlligChrista MeisingerChristian GiegerLina ZgagaTatijana ZemunikMladen BobanCosetta MinelliHeather E WheelerWilmar IglGhazal ZaboliSarah H WildAlan F WrightHarry CampbellDavid EllinghausUte NöthlingsGunnar JacobsReiner BiffarFlorian ErnstGeorg HomuthHeyo K KroemerMatthias NauckSylvia StrackeUwe VölkerHenry VölzkePeter KovacsMichael StumvollReedik MägiAlbert HofmanAndre G UitterlindenFernando RivadeneiraYurii S AulchenkoOzren PolasekNick HastieVeronique VitartCatherine HelmerJie Jin WangBénédicte StengelDaniela RuggieroSven BergmannMika KähönenJorma ViikariTiit NikopensiusMichael ProvinceShamika KetkarHelen ColhounAlex DoneyAntonietta RobinoBernhard K KrämerLaura PortasIan FordBrendan M BuckleyMartin AdamGian-Andri ThunBernhard PaulweberMargot HaunCinzia SalaPaul MitchellMarina CiulloStuart K KimPeter VollenweiderOlli RaitakariAndres MetspaluColin PalmerPaolo GaspariniMario PirastuJ Wouter JukemaNicole M Probst-HenschFlorian KronenbergDaniela TonioloVilmundur GudnasonAlan R ShuldinerJosef CoreshReinhold SchmidtLuigi FerrucciDavid S SiscovickCornelia M van DuijnIngrid B BoreckiSharon L R KardiaYongmei LiuGary C CurhanIgor RudanUlf GyllenstenJames F WilsonAndre FrankePeter P PramstallerRainer RettigInga ProkopenkoJacqueline WittemanCaroline HaywardPaul M RidkerAfshin ParsaMurielle BochudIris M HeidW H Linda KaoCaroline S FoxAnna Köttgen
Affiliations

Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

Daniel I Chasman et al. Hum Mol Genet. .

Abstract

In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
Overview of analytic strategy. Seed genes (step 0) were chosen, in most cases, on the basis of proximity to previously validated genome-wide significant associations (see Methods) (6).

Similar articles

Cited by

  • Advances in biotechnology and informatics to link variation in the genome to phenotypes in plants and animals.
    Appels R, Barrero R, Bellgard M. Appels R, et al. Funct Integr Genomics. 2013 Mar;13(1):1-9. doi: 10.1007/s10142-013-0319-2. Epub 2013 Mar 15. Funct Integr Genomics. 2013. PMID: 23494190 Free PMC article. Review.
  • 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.
    Gorski M, van der Most PJ, Teumer A, Chu AY, Li M, Mijatovic V, Nolte IM, Cocca M, Taliun D, Gomez F, Li Y, Tayo B, Tin A, Feitosa MF, Aspelund T, Attia J, Biffar R, Bochud M, Boerwinkle E, Borecki I, Bottinger EP, Chen MH, Chouraki V, Ciullo M, Coresh J, Cornelis MC, Curhan GC, d'Adamo AP, Dehghan A, Dengler L, Ding J, Eiriksdottir G, Endlich K, Enroth S, Esko T, Franco OH, Gasparini P, Gieger C, Girotto G, Gottesman O, Gudnason V, Gyllensten U, Hancock SJ, Harris TB, Helmer C, Höllerer S, Hofer E, Hofman A, Holliday EG, Homuth G, Hu FB, Huth C, Hutri-Kähönen N, Hwang SJ, Imboden M, Johansson Å, Kähönen M, König W, Kramer H, Krämer BK, Kumar A, Kutalik Z, Lambert JC, Launer LJ, Lehtimäki T, de Borst M, Navis G, Swertz M, Liu Y, Lohman K, Loos RJF, Lu Y, Lyytikäinen LP, McEvoy MA, Meisinger C, Meitinger T, Metspalu A, Metzger M, Mihailov E, Mitchell P, Nauck M, Oldehinkel AJ, Olden M, Wjh Penninx B, Pistis G, Pramstaller PP, Probst-Hensch N, Raitakari OT, Rettig R, Ridker PM, Rivadeneira F, Robino A, Rosas SE, Ruderfer D, Ruggiero D, Saba Y, Sala C, Schmidt H, Schmidt R, Scott RJ, Sedaghat S, Smith AV, Sorice R, Stengel B, Stracke S, Strauch K, Toniolo D, Uitterlinden AG, Ulivi S,… See abstract for full author list ➔ Gorski M, et al. Sci Rep. 2017 Apr 28;7:45040. doi: 10.1038/srep45040. Sci Rep. 2017. PMID: 28452372 Free PMC article.
  • Endocytic receptor LRP2/megalin-of holoprosencephaly and renal Fanconi syndrome.
    Willnow TE, Christ A. Willnow TE, et al. Pflugers Arch. 2017 Aug;469(7-8):907-916. doi: 10.1007/s00424-017-1992-0. Epub 2017 May 11. Pflugers Arch. 2017. PMID: 28497274 Review.
  • The Genetic Basis of Metabolic Disease.
    Barroso I, McCarthy MI. Barroso I, et al. Cell. 2019 Mar 21;177(1):146-161. doi: 10.1016/j.cell.2019.02.024. Cell. 2019. PMID: 30901536 Free PMC article. Review.
  • Structures of LRP2 reveal a molecular machine for endocytosis.
    Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Beenken A, et al. Cell. 2023 Feb 16;186(4):821-836.e13. doi: 10.1016/j.cell.2023.01.016. Epub 2023 Feb 6. Cell. 2023. PMID: 36750096 Free PMC article.

References

    1. Zhang Q.L., Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health. 2008;8:117. doi:10.1186/1471-2458-8-117. - DOI - PMC - PubMed
    1. Coresh J., Selvin E., Stevens L.A., Manzi J., Kusek J.W., Eggers P., Van Lente F., Levey A.S. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–2047. doi:10.1001/jama.298.17.2038. - DOI - PubMed
    1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney. Dis. 2002;39:S1–266. doi:10.1016/S0272-6386(02)70081-4. - DOI - PubMed
    1. Bochud M., Elston R.C., Maillard M., Bovet P., Schild L., Shamlaye C., Burnier M. Heritability of renal function in hypertensive families of African descent in the Seychelles (Indian Ocean) Kidney Int. 2005;67:61–69. doi:10.1111/j.1523-1755.2005.00055.x. - DOI - PubMed
    1. Fox C.S., Yang Q., Cupples L.A., Guo C.Y., Larson M.G., Leip E.P., Wilson P.W., Levy D. Genomewide linkage analysis to serum creatinine, GFR, and creatinine clearance in a community-based population: the Framingham heart study. J. Am. Soc. Nephrol. 2004;15: 2457–2461. doi:10.1097/01.ASN.0000135972.13396.6F. - DOI - PubMed

MeSH terms

Substances