Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Aug;142(3):845-63.
doi: 10.1037/a0029727. Epub 2012 Sep 10.

Inferential dependencies in causal inference: a comparison of belief-distribution and associative approaches

Affiliations

Inferential dependencies in causal inference: a comparison of belief-distribution and associative approaches

Christopher D Carroll et al. J Exp Psychol Gen. 2013 Aug.

Abstract

Causal evidence is often ambiguous, and ambiguous evidence often gives rise to inferential dependencies, where learning whether one cue causes an effect leads the reasoner to make inferences about whether other cues cause the effect. There are 2 main approaches to explaining inferential dependencies. One approach, adopted by Bayesian and propositional models, distributes belief across multiple explanations, thereby representing ambiguity explicitly. The other approach, adopted by many associative models, posits within-compound associations--associations that form between potential causes--that, together with associations between causes and effects, support inferences about related cues. Although these fundamentally different approaches explain many of the same results in the causal literature, they can be distinguished, theoretically and experimentally. We present an analysis of the differences between these approaches and, through a series of experiments, demonstrate that models that distribute belief across multiple explanations provide a better characterization of human causal reasoning than models that adopt the associative approach.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources