Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug 28;18(32):4399-403.
doi: 10.3748/wjg.v18.i32.4399.

Tissue transglutaminase levels above 100 U/mL and celiac disease: a prospective study

Affiliations

Tissue transglutaminase levels above 100 U/mL and celiac disease: a prospective study

Amani Mubarak et al. World J Gastroenterol. .

Abstract

Aim: To investigate whether a tissue-transglutaminase antibody (tTGA) level ≥ 100 U/mL is sufficient for the diagnosis of celiac disease (CD).

Methods: Children suspected of having CD were prospectively included in our study between March 2009 and September 2011. All patients with immune globulin A deficiency and all patients on a gluten-free diet were excluded from the study. Anti-endomysium antibodies (EMA) were detected by means of immunofluorescence using sections of distal monkey esophagus (EUROIMMUN, Luebeck, Germany). Serum anti-tTGA were measured by means of enzyme-linked immunosorbent assay using human recombinant tissue transglutaminase (ELiA Celikey IgA kit Phadia AB, Uppsala, Sweden). The histological slides were graded by a single experienced pathologist using the Marsh classification as modified by Oberhuber. Marsh II and III lesions were considered to be diagnostic for the disease. The positive predictive values (PPVs), negative predictive values (NPVs), sensitivity and specificity of EMA and tTGA along with their 95% CI (for the cut off values > 10 and ≥ 100 U/mL) were calculated using histology as the gold standard for CD.

Results: A total of 183 children were included in the study. A total of 70 (38.3%) were male, while 113 (61.7%) were female. The age range was between 1.0 and 17.6 years, and the mean age was 6.2 years. One hundred twenty (65.6%) patients had a small intestinal biopsy diagnostic for the disease; 3 patients had a Marsh II lesion, and 117 patients had a Marsh III lesion. Of the patients without CD, only 4 patients had a Marsh I lesion. Of the 183 patients, 136 patients were positive for EMA, of whom 20 did not have CD, yielding a PPV for EMA of 85% (95% CI: 78%-90%) and a corresponding specificity of 68% (95% CI: 55%-79%). The NPV and specificity for EMA were 91% (95% CI: 79%-97%) and 97% (95% CI: 91%-99%), respectively. Increased levels of tTGA were found in 130 patients, although only 116 patients truly had histological evidence of the disease. The PPV for tTGA was 89% (95% CI: 82%-94%), and the corresponding specificity was 78% (95% CI: 65%-87%). The NPV and sensitivity were 92% (95% CI: 81%-98%) and 97% (95% CI: 91%-99%), respectively. A tTGA level ≥ 100 U/mL was found in 87 (47.5%) patients, all of whom were also positive for EMA. In all these 87 patients, epithelial lesions confirming CD were found, giving a PPV of 100% (95%CI: 95%-100%). The corresponding specificity for this cut-off value was also 100% (95% CI: 93%-100%). Within this group, a total of 83 patients had symptoms, at least gastrointestinal and/or growth retardation. Three patients were asymptomatic but were screened because they belonged to a group at risk for CD (diabetes mellitus type 1 or positive family history). The fourth patient who lacked CD-symptoms was detected by coincidence during an endoscopy performed for gastro-intestinal bleeding.

Conclusion: This study confirms based on prospective data that a small intestinal biopsy is not necessary for the diagnosis of CD in symptomatic patients with tTGA ≥ 100 U/mL.

Keywords: Anti-endomysium antibodies; Anti-tissue-transglutaminase antibodies; Celiac disease; Diagnosis, Serology.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Catassi C, Fabiani E, Rätsch IM, Coppa GV, Giorgi PL, Pierdomenico R, Alessandrini S, Iwanejko G, Domenici R, Mei E, et al. The coeliac iceberg in Italy. A multicentre antigliadin antibodies screening for coeliac disease in school-age subjects. Acta Paediatr Suppl. 1996;412:29–35. - PubMed
    1. Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, Elitsur Y, Green PH, Guandalini S, Hill ID, et al. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study. Arch Intern Med. 2003;163:286–292. - PubMed
    1. Mäki M, Collin P. Coeliac disease. Lancet. 1997;349:1755–1759. - PubMed
    1. Dicke WK. [Treatment of celiac disease] Ned Tijdschr Geneeskd. 1951;95:124–130. - PubMed
    1. Hogen Esch CE, Wolters VM, Gerritsen SA, Putter H, von Blomberg BM, van Hoogstraten IM, Houwen RH, van der Lely N, Mearin ML. Specific celiac disease antibodies in children on a gluten-free diet. Pediatrics. 2011;128:547–552. - PubMed

Publication types

MeSH terms