Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 4:6:248.
doi: 10.3389/fnhum.2012.00248. eCollection 2012.

The cinema-cognition dialogue: a match made in brain

Affiliations

The cinema-cognition dialogue: a match made in brain

Yadin Dudai. Front Hum Neurosci. .

Abstract

That human evolution amalgamates biological and cultural change is taken as a given, and that the interaction of brain, body, and culture is more reciprocal then initially thought becomes apparent as the science of evolution evolves (Jablonka and Lamb, 2005). The contribution of science and technology to this evolutionary process is probably the first to come to mind. The biology of Homo sapiens permits and promotes the development of technologies and artefacts that enable us to sense and reach physical niches previously inaccessible. This extends our biological capabilities, but is also expected to create selective pressures on these capabilities. The jury is yet out on the pace at which critical biological changes take place in evolution. There is no question, however, that the kinetics of technological and cultural change is much faster, rendering the latter particularly important in the biography of the individual and the species alike. The capacity of art to enrich human capabilities is recurrently discussed by philosophers and critics (e.g., Arsitotle/Poetics, Richards, 1925; Smith and Parks, 1951; Gibbs, 1994). Yet less attention is commonly allotted to the role of the arts in the aforementioned ongoing evolutional tango. My position is that the art of cinema is particularly suited to explore the intriguing dialogue between art and the brain. Further, in the following set of brief notes, intended mainly to trigger further thinking on the subject, I posit that cinema provides an unparalleled and highly rewarding experimentation space for the mind of the individual consumer of that art. In parallel, it also provides a useful and promising device for investigating brain and cognition.

Keywords: brain; cinema; dissociative states; emotional mental travel; mental time travel; working memory.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Memory systems. Humans have multiple memory systems that could be classified according to multiple criteria. One is time: short- vs. long-term memory. On this axis, working memory (WM) is a type of dynamic short-term memory (see Figure 2A below). Long-term memory (LTM) systems are commonly classified into declarative, i.e., requiring conscious awareness for retrieval, and non-declarative, not requiring conscious awareness for retrieval. Declarative memory is further classified into the memory of events (episodic) and of facts (semantic). Episodic memory is considered to allow mental time travel (MTT) and hence imagining. Non-declarative memory includes types of memory as diverse as priming, habits and skills, motor and emotional reflexes, and more. The declarative—non-declarative dichotomy seems to be honored by the brain, which contains different neural circuits for each system. Only non-declarative (implicit) emotion is noted in the scheme, but mental emotional travel (MET), discussed in the text, involves also declarative (explicit) manifestations. WM, involving attentional control, is usually discussed in the context of declarative tasks, but some information passing via WM is likely to end up over time in non-declarative long-term “stores.” (Adapted from Dudai, 2008).
Figure 2
Figure 2
Film resonates with working memory. A dominant model of WM considers multiple components (Baddeley, 2007). They are portrayed as a master system, the central executive, which executes attentional control over subordinate systems that are content-dedicated mental workspaces, the phonological loop, which deals with speech-based information, and the visuospatial sketchpad, that deals with visuospatial information. Another postulated component is the episodic buffer, in which information from the content-dedicated-workspaces and LTM is temporarily bound under the control of the central executive, to form coherent representations of events, on the potential route to LTM. The mental state evoked by the relevance to survival (e.g., threat, mate, food) of the information flowing into each of the subordinate systems and bound in the episodic buffer, could be considered as “emotion”; it is usually not explicitly included in models of WM and therefore not depicted in the scheme discussed here, yet is highly relevant to the appeal and effect of cinema (see MET in the text). (A) Defining attributes of narrative film resonate neatly with multiple components of WM, as well as with effective transformation of information from the episodic buffer into long-term memory. Three major attributes are contextual focusing of the central executive toward the stimulus, intense multi-modal co-activation of both the visuospatial sketchpad and the phonological loop, and compression of narrative highlights that facilitate the focusing of the CE as well the pruning of information to be consolidated from the episodic buffer into LTM. “Author” usually represents multiple individuals though in some cases mainly the director, still never really in isolation. (B) Captivating movies can induce a dissociative state in which the movie stimulus dominates the operation of WM components to temporary block simultaneous unrelated input. For further discussion including comparison to other art forms and other dissociative states, see text. (The frame in the inset is from Bresson's Pickpocket, 1959) (Adapted from Dudai, 2008).
Figure 3
Figure 3
Film as a window for exploring brain and cognition. As discussed in the text, movies enrich human cognitive experience, but also provide a window into how this experience is encoded in the experiencing brain, because they can be used as reproducible real-life-like stimuli in perceptual and memory experiments. In this example, Hasson et al. (2008a) used a narrative movie as the stimulus to be encoded in long-term episodic memory. The statistical maps of blood oxygen level dependent (BOLD) activity depict brain areas with significantly enhanced activity during movie events that were subsequently remembered compared to events that were not remembered. These areas include the right temporal pole (TP), bilateral anterior and posterior superior temporal gyrus (STG), bilateral anterior parahippocampal cortex (aPHG), bilateral posterior parahippocampal gyrus (pPHG), and bilateral temporoparietal junction (TPJ). These areas were implicated by other studies in social cognition. RH, LH, are right and left hemisphere, respectively. This suggests that in real-life, the modulation of social cognitive processes impacts episodic memory formation, a finding not commonly unveiled by using simple static and contextless stimuli in memory experiments. (Adopted with permission from Hasson et al., 2008a).

Similar articles

Cited by

References

    1. Andrew J. D. (1976). Major Film Theories: An Introduction. New York, NY: Oxford University Press
    1. Arima I. (2003). In Ozu (1953/2003), Disc 2. New York, NY: The Criterion Collection
    1. Aristotle. (1984). Poetics, in The Complete Works, Vol. 2, ed Barnes J. (Princeton, NJ: Princeton University Press; ), 2316–2340
    1. Baddeley A. (2007). Working Memory, Thought, and Action. Oxford: Oxford University Press; 10.1162/jocn.2010.21519 - DOI
    1. Bar M. (ed.). (2011). Predictions in the Brain. Using Our Past to Generate a Future. New York, NY: Oxford University Press

LinkOut - more resources