Syntenic gene analysis between Brassica rapa and other Brassicaceae species
- PMID: 22969786
- PMCID: PMC3430884
- DOI: 10.3389/fpls.2012.00198
Syntenic gene analysis between Brassica rapa and other Brassicaceae species
Abstract
Chromosomal synteny analysis is important in genome comparison to reveal genomic evolution of related species. Shared synteny describes genomic fragments from different species that originated from an identical ancestor. Syntenic genes are orthologs located in these syntenic fragments, so they often share similar functions. Syntenic gene analysis is very important in Brassicaceae species to share gene annotations and investigate genome evolution. Here we designed and developed a direct and efficient tool, SynOrths, to identify pairwise syntenic genes between genomes of Brassicaceae species. SynOrths determines whether two genes are a conserved syntenic pair based not only on their sequence similarity, but also by the support of homologous flanking genes. Syntenic genes between Arabidopsis thaliana and Brassica rapa, Arabidopsis lyrata and B. rapa, and Thellungiella parvula and B. rapa were then identified using SynOrths. The occurrence of genome triplication in B. rapa was clearly observed, many genes that were evenly distributed in the genomes of A. thaliana, A. lyrata, and T. parvula had three syntenic copies in B. rapa. Additionally, there were many B. rapa genes that had no syntenic orthologs in A. thaliana, but some of these had syntenic orthologs in A. lyrata or T. parvula. Only 5,851 genes in B. rapa had no syntenic counterparts in any of the other three species. These 5,851 genes could have originated after B. rapa diverged from these species. A tool for syntenic gene analysis between species of Brassicaceae was developed, SynOrths, which could be used to accurately identify syntenic genes in differentiated but closely-related genomes. With this tool, we identified syntenic gene sets between B. rapa and each of A. thaliana, A. lyrata, T. parvula. Syntenic gene analysis is important for not only the gene annotation of newly sequenced Brassicaceae genomes by bridging them to model plant A. thaliana, but also the study of genome evolution in these species.
Keywords: Arabidopsis lyrata; Arabidopsis thaliana; Brassica rapa; Brassicaceae; Thellugiella parvula; ortholog; synteny.
Figures



Similar articles
-
The Impact of Genome Triplication on Tandem Gene Evolution in Brassica rapa.Front Plant Sci. 2012 Nov 29;3:261. doi: 10.3389/fpls.2012.00261. eCollection 2012. Front Plant Sci. 2012. PMID: 23226149 Free PMC article.
-
Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.Database (Oxford). 2015 Nov 20;2015:bav093. doi: 10.1093/database/bav093. Print 2015. Database (Oxford). 2015. PMID: 26589635 Free PMC article.
-
Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history.Plant Sci. 2016 Jun;247:35-48. doi: 10.1016/j.plantsci.2016.03.002. Epub 2016 Mar 10. Plant Sci. 2016. PMID: 27095398
-
Genome triplication drove the diversification of Brassica plants.Hortic Res. 2014 May 21;1:14024. doi: 10.1038/hortres.2014.24. eCollection 2014. Hortic Res. 2014. PMID: 26504539 Free PMC article. Review.
-
The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes.Trends Plant Sci. 2006 Nov;11(11):535-42. doi: 10.1016/j.tplants.2006.09.002. Epub 2006 Oct 6. Trends Plant Sci. 2006. PMID: 17029932 Review.
Cited by
-
Improved Brassica oleracea JZS assembly reveals significant changing of LTR-RT dynamics in different morphotypes.Theor Appl Genet. 2020 Nov;133(11):3187-3199. doi: 10.1007/s00122-020-03664-3. Epub 2020 Aug 9. Theor Appl Genet. 2020. PMID: 32772134
-
The Impact of Genome Triplication on Tandem Gene Evolution in Brassica rapa.Front Plant Sci. 2012 Nov 29;3:261. doi: 10.3389/fpls.2012.00261. eCollection 2012. Front Plant Sci. 2012. PMID: 23226149 Free PMC article.
-
Genome-wide characterization of two Aubrieta taxa: Aubrieta canescens subsp. canescens and Au. macrostyla (Brassicaceae).AoB Plants. 2022 Sep 10;14(5):plac035. doi: 10.1093/aobpla/plac035. eCollection 2022 Oct. AoB Plants. 2022. PMID: 36196394 Free PMC article.
-
Targeting natural products against SARS-CoV-2.Environ Sci Pollut Res Int. 2022 Jun;29(28):42404-42432. doi: 10.1007/s11356-022-19770-2. Epub 2022 Apr 1. Environ Sci Pollut Res Int. 2022. PMID: 35362883 Free PMC article. Review.
-
Cellular Plasticity in Response to Suppression of Storage Proteins in the Brassica napus Embryo.Plant Cell. 2020 Jul;32(7):2383-2401. doi: 10.1105/tpc.19.00879. Epub 2020 Apr 30. Plant Cell. 2020. PMID: 32358071 Free PMC article.
References
-
- Hu T. T., Pattyn P., Bakker E. G., Cao J., Cheng J. F., Clark R. M., Fahlgren N., Fawcett J. A., Grimwood J., Gundlach H., Haberer G., Hollister J. D., Ossowski S., Ottilar R. P., Salamov A. A., Schneeberger K., Spannagl M., Wang X., Yang L., Nasrallah M. E., Bergelson J., Carrington J. C., Gaut B. S., Schmutz J., Mayer K. F., Van de Peer Y., Grigoriev I. V., Nordborg M., Weigel D., Guo Y. L. (2011). The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481 10.1038/ng.807 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources