Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012:2012:403908.
doi: 10.1155/2012/403908. Epub 2012 Aug 30.

Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

Affiliations

Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

Jessica M F Hall et al. Dermatol Res Pract. 2012.

Abstract

Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A schematic representation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous interaction with the cutaneous immune system. Stress signals induce release of hormones, including corticotropin-releasing hormone (CRH) from the paraventricular nucleus (PVN) of the hypothalamus. CRH induces adrenocorticotropic hormone (ACTH) release from the anterior pituitary [20]. In turn, ACTH regulates glucocorticoid secretion from the adrenal cortex [22]. Cortisol has several functions including negative feedback of the hypothalamus and anterior pituitary and induces epinephrine and norepinephrine from the adrenal medulla [23]. Glucocorticoids, such as cortisol, as well as epinephrine and norepinephrine may enhance cutaneous immune responses at low concentrations and suppress immune responses at high concentrations [5, 28]. Stress signals also stimulate the locus coeruleus (LC) norepinephrine cells (NE) of the sympathetic nervous system [18]. Neuropeptide products of the sympathetic response (substance P (SP), calcitonin gene-related peptide (CGRP), and cutaneous nerve growth factor (NGF)) have been shown to be proinflammatory and anti-inflammatory dependent on the immune cell type [–34]. There also exists a positive, reverberatory feedback loop between the HPA axis and LC-NE [18, 21]. Results show that HPA and sympathetic stress responses both modify the cutaneous immune response.

Similar articles

Cited by

References

    1. Dhabhar FS, Miller AH, Stein M, McEwen BS, Spencer RL. Diurnal and acute stress-induced changes in distribution of peripheral blood leukocyte subpopulations. Brain, Behavior, and Immunity. 1994;8(1):66–79. - PubMed
    1. Dhabhar FS, Miller AH, McEwen BS, Spencer RL. Effects of stress on immune cell distribution: dynamics and hormonal mechanisms. Journal of Immunology. 1995;154(10):5511–5527. - PubMed
    1. Dhabhar FS, McEwen BS. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain, Behavior, and Immunity. 1997;11(4):286–306. - PubMed
    1. Dhabhar FS, Mcewen BS. Enhancing versus suppressive effects of stress hormones on skin immune function. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(3):1059–1064. - PMC - PubMed
    1. Dhabhar FS. Acute stress enhances while chronic stress suppresses skin immunity: the role of stress hormones and leukocyte trafficking. Annals of the New York Academy of Sciences. 2000;917:876–893. - PubMed

LinkOut - more resources