Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2013 Jan;51(1):8-12.
doi: 10.3109/13880209.2012.697175. Epub 2012 Sep 12.

Excessive nicotinic acid increases methyl consumption and hydrogen peroxide generation in rats

Affiliations
Free article
Comparative Study

Excessive nicotinic acid increases methyl consumption and hydrogen peroxide generation in rats

Da Li et al. Pharm Biol. 2013 Jan.
Free article

Abstract

Context: Recent ecological evidence has showed a lag-correlation between the prevalence of diabetes and consumption of niacin (nicotinamide and nicotinic acid) in the US. Nicotinamide has been demonstrated to induce insulin resistance due to excess reactive oxygen species and methyl depletion, whereas the effect of nicotinic acid is poorly understood.

Objective: To examine the mechanism of the effect of nicotinic acid on glucose metabolism.

Materials and methods: Rats were injected with different cumulative doses of nicotinic acid (0.5, 2, 4 g/kg) and nicotinamide (2 g/kg). A glucose tolerance test was given 2 h after the final injection. The role of methyl consumption and reactive oxygen species generation were evaluated by measuring N(1)-methylnicotinamide and hydrogen peroxide.

Results: Cumulative doses of nicotinic acid produced a dose-dependent increase in the plasma levels of N(1)-methylnicotinamide and hydrogen peroxide, which was associated with a decrease in liver and skeletal muscle glycogen levels. At the same dosage (2 g/kg), in comparison with nicotinamide, nicotinic acid was weaker in raising plasma N(1)-methylnicotinamide levels (0.7 ± 0.11 µg/mL vs. 4.69 ± 0.24 µg/mL, P < 0.001), but stronger in increasing plasma hydrogen peroxide levels (1.88 ± 0.07 µmol/L vs. 1.55 ± 0.05 µmol/L, P < 0.001). Moreover, nicotinamide, unlike nicotinic acid, did not reduce liver glycogen levels.

Discussion and conclusion: This study suggested that excessive nicotinic acid, like nicotinamide, might induce methyl consumption, oxidative stress and insulin resistance. Long-term consumption high niacin may increase the risk of type 2 diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources