Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;63(7):1268-77.
doi: 10.1016/j.neuropharm.2012.07.029. Epub 2012 Aug 10.

Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease

Affiliations

Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease

Isobel J Sleeman et al. Neuropharmacology. 2012 Dec.

Abstract

Fibroblast growth factor-20 (FGF-20) has been shown to protect dopaminergic neurons against a range of toxic insults in vitro, through activation of fibroblast growth factor receptor 1 (FGFR1). This study set out to examine whether FGF-20 also displayed protective efficacy in the unilateral, 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease. Initial studies demonstrated that, in embryonic ventral mesencephalic (VM) cultures, FGFR1 was expressed on tyrosine hydroxylase (TH)-positive neurons and that, in line with previous data, FGF-20 (100 and 500 ng/ml) almost completely protected these TH-positive neurons against 6-OHDA-induced toxicity. Co-localisation of FGFR1 and TH staining was also demonstrated in the substantia nigra pars compacta (SNpc) of naïve adult rat brain. In animals subject to 6-OHDA lesion of the nigrostriatal tract, supra-nigral infusion of FGF-20 (2.5 μg/day) for 6 days post-lesion gave significant protection (∼40%) against the loss of TH-positive cells in the SNpc and the loss of striatal TH immunoreactivity. This protection of the nigrostriatal tract was accompanied by a significant preservation of gross locomotion and fine motor movements and reversal of apomorphine-induced contraversive rotations, although forelimb akinesia, assessed using cylinder test reaching, was not improved. These results support a role for FGF-20 in preserving dopamine neuron integrity and some aspects of motor function in a rodent model of Parkinson's disease (PD) and imply a potential neuroprotective role for FGF-20 in this disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources