Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Oct 21;4(20):6235-43.
doi: 10.1039/c2nr31865b.

Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes

Affiliations
Review

Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes

Fengqin Hu et al. Nanoscale. .

Abstract

Magnetic resonance imaging (MRI) yields high spatially resolved contrast with anatomical details for diagnosis, deeper penetration depth and rapid 3D scanning. To improve imaging sensitivity, adding contrast agents accelerates the relaxation rate of water molecules, thereby greatly increasing the contrast between specific issues or organs of interest. Currently, the majority of T(1) contrast agents are paramagnetic molecular complexes, typically Gd(iii) chelates. Various nanoparticulate T(1) and T(1)/T(2) contrast agents have recently been investigated as novel agents possessing the advantages of both the T(1) contrast effect and nanostructural characteristics. In this minireview, we describe the recent progress of these inorganic nanoparticle-based MRI contrast agents. Specifically, we mainly report on Gd and Mn-based inorganic nanoparticles and ultrasmall iron oxide/ferrite nanoparticles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources