Structural characteristics of active and inactive glutamate dehydrogenases from the hyperthermophile Pyrobaculum islandicum
- PMID: 22972344
- DOI: 10.1271/bbb.120367
Structural characteristics of active and inactive glutamate dehydrogenases from the hyperthermophile Pyrobaculum islandicum
Abstract
The enzymes from hyperthermophiles are generally extremely thermostable and lose little or no activity during long periods under a variety conditions. This high stability is very attractive, in that it gives the enzymes potential for use in numerous bioprocesses. My research group has investigated this high stability from the viewpoint of the relationship between function and structure. In this review, I describe the molecular mechanism underlying the extreme stability of unboiled NAD-dependent glutamate dehydrogenase from the hyperthermophile Pyrobaculum islandicum. I also describe the activation of the inactive recombinant enzyme produced in mesophilic Escherichia coli from the viewpoint of the relationship between structure and activity.
Similar articles
-
The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum.J Mol Biol. 2005 Jan 14;345(2):325-37. doi: 10.1016/j.jmb.2004.10.063. J Mol Biol. 2005. PMID: 15571725
-
Unique active site formation in a novel galactose 1-phosphate uridylyltransferase from the hyperthermophilic archaeon Pyrobaculum aerophilum.Proteins. 2020 May;88(5):669-678. doi: 10.1002/prot.25848. Epub 2019 Nov 22. Proteins. 2020. PMID: 31693208
-
Crystal structure of UDP-galactose 4-epimerase from the hyperthermophilic archaeon Pyrobaculum calidifontis.Arch Biochem Biophys. 2011 Aug 15;512(2):126-34. doi: 10.1016/j.abb.2011.05.013. Epub 2011 May 27. Arch Biochem Biophys. 2011. PMID: 21645492
-
[Activation mechanism of the inactive hyperthermophilic glutamate dehydrogenases produced in Escherichia coli].Seikagaku. 2009 Dec;81(12):1049-55. Seikagaku. 2009. PMID: 20077847 Review. Japanese. No abstract available.
-
Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase.FEMS Microbiol Rev. 1996 May;18(2-3):105-17. doi: 10.1111/j.1574-6976.1996.tb00230.x. FEMS Microbiol Rev. 1996. PMID: 8639325 Review.
Cited by
-
S-adenosyl-L-homocysteine hydrolase from a hyperthermophile (Thermotoga maritima) is expressed in Escherichia coli in inactive form - Biochemical and structural studies.Int J Biol Macromol. 2017 Nov;104(Pt A):584-596. doi: 10.1016/j.ijbiomac.2017.06.065. Epub 2017 Jun 16. Int J Biol Macromol. 2017. PMID: 28629859 Free PMC article.
-
Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.Appl Environ Microbiol. 2016 Dec 30;83(2):e02710-16. doi: 10.1128/AEM.02710-16. Print 2017 Jan 15. Appl Environ Microbiol. 2016. PMID: 27815281 Free PMC article.
-
Conformational changes in the catalytic region are responsible for heat-induced activation of hyperthermophilic homoserine dehydrogenase.Commun Biol. 2022 Jul 14;5(1):704. doi: 10.1038/s42003-022-03656-7. Commun Biol. 2022. PMID: 35835834 Free PMC article.
-
Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections.Front Bioeng Biotechnol. 2021 Aug 12;9:710035. doi: 10.3389/fbioe.2021.710035. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 34458243 Free PMC article. Review.