Size dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes
- PMID: 22972403
- PMCID: PMC3752666
- DOI: 10.1039/c2em30405h
Size dependent aqueous dispersibility of carboxylated multiwall carbon nanotubes
Abstract
The size dependent colloidal behavior of aqueous dispersions of carboxylated multiwall carbon nanotubes (c-MWCNTs) is presented. The presence of carboxylic groups provided electrostatic stabilization in water, where the size affected agglomeration. While aspect ratio did not show any definite correlation, the hydrophobicity indices (HI), zeta potential and aggregation kinetics showed dependence on the length of the c-MWCNTs where the shorter c-MWCNTs showed significantly lower HI values, smaller particle aggregates, higher zeta potential values and higher critical coagulation concentrations (ccc) in the presence of electrolytes. Although the diameter of the short c-MWCNTs did not appear to influence their aggregation behavior, the longer c-MWCNTs showed a dependence on diameter where stability decreased with increasing CNT diameter.
Figures








Similar articles
-
Fractionation of carboxylated carbon nanotubes and the corresponding variation in their colloidal behavior.Environ Sci Process Impacts. 2014;16(10):2295-300. doi: 10.1039/c4em00224e. Environ Sci Process Impacts. 2014. PMID: 25059309
-
Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions.J Colloid Interface Sci. 2011 Mar 15;355(2):383-8. doi: 10.1016/j.jcis.2010.12.052. Epub 2010 Dec 22. J Colloid Interface Sci. 2011. PMID: 21236442 Free PMC article.
-
Antisolvent precipitation of hydrophobic functionalized multiwall carbon nanotubes in an aqueous environment.J Colloid Interface Sci. 2012 Feb 15;368(1):115-20. doi: 10.1016/j.jcis.2011.11.019. Epub 2011 Nov 22. J Colloid Interface Sci. 2012. PMID: 22142999
-
Effect of primary particle size on colloidal stability of multiwall carbon nanotubes.Water Sci Technol. 2013;68(10):2249-56. doi: 10.2166/wst.2013.489. Water Sci Technol. 2013. PMID: 24292475
-
Carbon Nanotubes-Based Nanofluidic Devices: Fabrication, Property and Application.ChemistryOpen. 2022 Nov;11(11):e202200126. doi: 10.1002/open.202200126. ChemistryOpen. 2022. PMID: 36351756 Free PMC article. Review.
Cited by
-
Stepwise Reduction of Graphene Oxide (GO) and Its Effects on Chemical and Colloidal Properties.Sci Rep. 2018 Jul 4;8(1):10083. doi: 10.1038/s41598-018-28353-6. Sci Rep. 2018. PMID: 29973609 Free PMC article.
-
The adverse vascular effects of multi-walled carbon nanotubes (MWCNTs) to human vein endothelial cells (HUVECs) in vitro: role of length of MWCNTs.J Nanobiotechnology. 2017 Nov 10;15(1):80. doi: 10.1186/s12951-017-0318-x. J Nanobiotechnology. 2017. PMID: 29126419 Free PMC article.
-
Change in Chirality of Semiconducting Single-Walled Carbon Nanotubes Can Overcome Anionic Surfactant Stabilization: A Systematic Study of Aggregation Kinetics.Environ Chem. 2015 May 20;12(6):652-661. doi: 10.1071/EN14176. Environ Chem. 2015. PMID: 26855611 Free PMC article.
-
Variation in chemical, colloidal and electrochemical properties of carbon nanotubes with the degree of carboxylation.J Nanopart Res. 2017 Jan;19:16. doi: 10.1007/s11051-016-3697-2. Epub 2017 Jan 9. J Nanopart Res. 2017. PMID: 29046611 Free PMC article.
References
-
- O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE. Chem. Phys. Lett. 2001;342:265–271.
-
- Zorbas V, Ortiz-Acevedo A, Dalton AB, Yoshida MM, Dieckmann GR, Draper RK, Baughman RH, Jose-Yacaman M, Musselman IH. J. Am. Chem. Soc. 2004;126:7222–7227. - PubMed
-
- Lin Y, Allard LF, Sun Y-P. J. Phys. Chem. B. 2004;108:3760–3764.
-
- Jeynes JCG, Mendoza E, Chow DCS, Watts PCP, McFadden J, Silva SRP. Adv Mater. 2006;18:1598–1602.
-
- Chen Y, Iqbal Z, Mitra S. Adv. Funct. Mater. 2007;17:3946–3951.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources