An information criterion for marginal structural models
- PMID: 22972662
- PMCID: PMC4180061
- DOI: 10.1002/sim.5599
An information criterion for marginal structural models
Abstract
Marginal structural models were developed as a semiparametric alternative to the G-computation formula to estimate causal effects of exposures. In practice, these models are often specified using parametric regression models. As such, the usual conventions regarding regression model specification apply. This paper outlines strategies for marginal structural model specification and considerations for the functional form of the exposure metric in the final structural model. We propose a quasi-likelihood information criterion adapted from use in generalized estimating equations. We evaluate the properties of our proposed information criterion using a limited simulation study. We illustrate our approach using two empirical examples. In the first example, we use data from a randomized breastfeeding promotion trial to estimate the effect of breastfeeding duration on infant weight at 1 year. In the second example, we use data from two prospective cohorts studies to estimate the effect of highly active antiretroviral therapy on CD4 count in an observational cohort of HIV-infected men and women. The marginal structural model specified should reflect the scientific question being addressed but can also assist in exploration of other plausible and closely related questions. In marginal structural models, as in any regression setting, correct inference depends on correct model specification. Our proposed information criterion provides a formal method for comparing model fit for different specifications.
Copyright © 2012 John Wiley & Sons, Ltd.
Figures




Comment in
-
Comments on 'An information criterion for marginal structural models' by R. W. Platt, M. A. Brookhart, S. R. Cole, D. Westreich, and E. F. Schisterman.Stat Med. 2013 Sep 10;32(20):3590-1. doi: 10.1002/sim.5810. Stat Med. 2013. PMID: 23943549 No abstract available.
Similar articles
-
Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness.Biometrics. 2019 Sep;75(3):950-965. doi: 10.1111/biom.13060. Epub 2019 Apr 25. Biometrics. 2019. PMID: 31004449 Free PMC article.
-
The parametric g-formula to estimate the effect of highly active antiretroviral therapy on incident AIDS or death.Stat Med. 2012 Aug 15;31(18):2000-9. doi: 10.1002/sim.5316. Epub 2012 Apr 11. Stat Med. 2012. PMID: 22495733 Free PMC article.
-
Estimating causal treatment effects from longitudinal HIV natural history studies using marginal structural models.Biometrics. 2003 Mar;59(1):152-62. doi: 10.1111/1541-0420.00018. Biometrics. 2003. PMID: 12762452
-
Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.Stat Med. 2015 Jan 15;34(1):106-17. doi: 10.1002/sim.6322. Epub 2014 Oct 15. Stat Med. 2015. PMID: 25316152 Free PMC article.
-
A bivariate pseudolikelihood for incomplete longitudinal binary data with nonignorable nonmonotone missingness.Biometrics. 2011 Sep;67(3):1119-26. doi: 10.1111/j.1541-0420.2010.01525.x. Epub 2010 Dec 14. Biometrics. 2011. PMID: 21155748 Free PMC article.
Cited by
-
The Choice of Analytical Strategies in Inverse-Probability-of-Treatment-Weighted Analysis: A Simulation Study.Am J Epidemiol. 2015 Sep 15;182(6):520-7. doi: 10.1093/aje/kwv098. Epub 2015 Aug 26. Am J Epidemiol. 2015. PMID: 26316599 Free PMC article.
-
Effects of glucosamine and chondroitin supplementation on knee osteoarthritis: an analysis with marginal structural models.Arthritis Rheumatol. 2015 Mar;67(3):714-23. doi: 10.1002/art.38932. Arthritis Rheumatol. 2015. PMID: 25369761 Free PMC article.
-
Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness.Biometrics. 2019 Sep;75(3):950-965. doi: 10.1111/biom.13060. Epub 2019 Apr 25. Biometrics. 2019. PMID: 31004449 Free PMC article.
-
A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators.Int J Biostat. 2016 May 1;12(1):131-55. doi: 10.1515/ijb-2015-0028. Int J Biostat. 2016. PMID: 27227720 Free PMC article.
-
An R package for model fitting, model selection and the simulation for longitudinal data with dropout missingness.Commun Stat Simul Comput. 2019;48(9):2812-2829. doi: 10.1080/03610918.2018.1468457. Epub 2018 Oct 16. Commun Stat Simul Comput. 2019. PMID: 32346220 Free PMC article.
References
-
- Robins JM. Marginal structural models. 1997 Proceedings of the American Statistical Association. 1998:1–10. Section on Bayesian Statistical Science.
-
- Robins JM. Marginal structural models versus structural nested models as tools for causal inference. In: Halloran ME, Berry D, editors. Marginal Structural Models Versus Structural Nested Models as Tools for Causal Inference. Springer; New York: 1999. pp. 95–134.
-
- Robins JM. Association, causation and marginal structural models. Synthese. 1999;121:151–179.
-
- Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–560. - PubMed
-
- Choi HK, Hernán MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002;359:1173–1177. - PubMed
Publication types
MeSH terms
Grants and funding
- UO1-HD-32632/HD/NICHD NIH HHS/United States
- UO1-AI-34994/AI/NIAID NIH HHS/United States
- UO1-AI-34989/AI/NIAID NIH HHS/United States
- UO1-AI-35042/AI/NIAID NIH HHS/United States
- UO1-AI-35040/AI/NIAID NIH HHS/United States
- UO1-AI-35041/AI/NIAID NIH HHS/United States
- UO1-AI-35004/AI/NIAID NIH HHS/United States
- UO1-AI-34993/AI/NIAID NIH HHS/United States
- R00 HD063961/HD/NICHD NIH HHS/United States
- UL1-RR025005/RR/NCRR NIH HHS/United States
- UO1-AI-35039/AI/NIAID NIH HHS/United States
- UO1-AI-42590/AI/NIAID NIH HHS/United States
- UO1-AI-31834/AI/NIAID NIH HHS/United States
- K25 AG027400/AG/NIA NIH HHS/United States
- UO1-AI-35043/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Research Materials