Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Sep 13:10:104.
doi: 10.1186/1741-7015-10-104.

New treatments for influenza

Affiliations
Review

New treatments for influenza

Sailen Barik. BMC Med. .

Abstract

Influenza has a long history of causing morbidity and mortality in the human population through routine seasonal spread and global pandemics. The high mutation rate of the RNA genome of the influenza virus, combined with assortment of its multiple genomic segments, promote antigenic diversity and new subtypes, allowing the virus to evade vaccines and become resistant to antiviral drugs. There is thus a continuing need for new anti-influenza therapy using novel targets and creative strategies. In this review, we summarize prospective future therapeutic regimens based on recent molecular and genomic discoveries.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Anti-influenza drugs and their biological targets. The relevant viral proteins (color-coded) and old and new drugs targeting them are shown (not drawn to scale). The genomic ribonucleoprotein complex is shown as tightly coiled. Influenza viral RNA synthesis occurs in the infected host nucleus using this ribonucleoprotein as a template, while translation occurs in the cytoplasm. Neuraminidase (NA) and the drug candidate, Fludase, cleave the sialic acid receptor on the cell membrane, as indicated by the cutting scissors. Nonstructural proteins (only NS1 is shown) are not packaged in mature virions. Diverse viral products activate an inflammatory response that can be quelled by the use of anti-inflammatory treatments, such as non-steroidal anti-inflammatory drugs. Potential future drug regimens, targeting influenza-relevant cellular functions, are shown at the bottom. (Influenza virion image credit: Dan Higgins and Doug Jordan, CDC Public Health Photo Library, image #11822). HA: hemagglutinin; IFN: interferon; NA: neuraminidase; NS: nonstructural protein; RNP: ribonucleoprotein.
Figure 2
Figure 2
Structure of selected class-representative anti-influenza drugs, old as well as prospective ones. The neuraminidase inhibitors, and N-acetyl neuraminic acid that they mimic, are shown in the box. For all molecules, the PubChem compound numbers (CID#) are written under each name. In FTY720, one of the two -OH groups is phosphorylated to yield the bioactive phosphate derivative (not shown). The structure of AAL-4 is similar (not shown), but it has only one -OH group instead of two, which is phosphorylated much faster. M2 inhibitors are not shown for lack of space and because they are largely discontinued due to viral resistance. All structures were obtained from the free PubChem Compound Database at National Center for Biotechnology Information (accessed June 15, 2012) [44]. NANA: N-acetyl neuraminic acid.
Figure 3
Figure 3
Sequences of selected anti-influenza macromolecules. Three representative classes are shown (siRNA, defensin and cathelicidin). Experimentally successful siRNA against influenza PA, PB1 and NP genes are shown in the upper box [90]. For each siRNA, the location of the sequence in the original gene is indicated by nucleotide number; thus, PA-2087 indicates an siRNA in which the first nucleotide at position 2087 of the PA gene. The upper strand is written 5′to 3′; the two deoxythymidine (dT) at the 3′-end are presumed to stabilize the siRNA [91]. The lower box shows the 37-mer peptide LL-37, written in single letter codes [92-94]. In the defensin family, note the abundance of Arg and Cys residues that are important for function [89].

References

    1. WHO. Influenza (seasonal) 2009. http://www.who.int/mediacentre/factsheets/fs211/en/
    1. Metersky ML, Masterton RG, Lode H, File TM Jr, Babinchak T. Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int J Infect Dis. 2012;16:e321–331. - PubMed
    1. Hale BG, Albrecht RA, García-Sastre A. Innate immune evasion strategies of influenza viruses. Future Microbiol. 2010;5:23–41. doi: 10.2217/fmb.09.108. - DOI - PMC - PubMed
    1. Palese P, Shaw ML. In: Fields Virology. 5. Knipe DM, Howley PM, editor. Philadelphia, PA: Lippincott Williams & Wilkins; 2007. Orthomyxoviridae: the viruses and their replication; pp. 1647–1689.
    1. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis. 2008;198:962–970. doi: 10.1086/591708. - DOI - PMC - PubMed

Publication types

MeSH terms

Substances