Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils
- PMID: 22974448
- PMCID: PMC3685169
- DOI: 10.1021/ja3063088
Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils
Abstract
Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.
Figures



Similar articles
-
The d'--d--d' vertical triad is less discriminating than the a'--a--a' vertical triad in the antiparallel coiled-coil dimer motif.J Am Chem Soc. 2012 Feb 8;134(5):2626-33. doi: 10.1021/ja208855x. Epub 2012 Jan 31. J Am Chem Soc. 2012. PMID: 22296518 Free PMC article.
-
Preferred side-chain constellations at antiparallel coiled-coil interfaces.Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):530-5. doi: 10.1073/pnas.0709068105. Epub 2008 Jan 9. Proc Natl Acad Sci U S A. 2008. PMID: 18184807 Free PMC article.
-
Importance of potential interhelical salt-bridges involving interior residues for coiled-coil stability and quaternary structure.J Mol Biol. 2002 Nov 22;324(2):257-70. doi: 10.1016/s0022-2836(02)01072-0. J Mol Biol. 2002. PMID: 12441105
-
The use of coiled-coil proteins in drug delivery systems.Eur J Pharmacol. 2009 Dec 25;625(1-3):101-7. doi: 10.1016/j.ejphar.2009.05.034. Epub 2009 Oct 14. Eur J Pharmacol. 2009. PMID: 19835864 Free PMC article. Review.
-
Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.Handb Exp Pharmacol. 2008;(186):461-82. doi: 10.1007/978-3-540-72843-6_19. Handb Exp Pharmacol. 2008. PMID: 18491064 Review.
Cited by
-
A switch from parallel to antiparallel strand orientation in a coiled-coil X-ray structure via two core hydrophobic mutations.Biopolymers. 2015 May;104(3):178-85. doi: 10.1002/bip.22631. Biopolymers. 2015. PMID: 25753192 Free PMC article.
-
Proteomimetic Strategy for the Modulation of Intrinsically Disordered Protein MYC.J Am Chem Soc. 2025 Apr 23;147(16):13296-13302. doi: 10.1021/jacs.4c18144. Epub 2025 Apr 8. J Am Chem Soc. 2025. PMID: 40198840 Free PMC article.
-
Synthetic Control of Tertiary Helical Structures in Short Peptides.J Am Chem Soc. 2018 Nov 28;140(47):16284-16290. doi: 10.1021/jacs.8b10082. Epub 2018 Nov 14. J Am Chem Soc. 2018. PMID: 30395711 Free PMC article.
-
Data-driven prediction and design of bZIP coiled-coil interactions.PLoS Comput Biol. 2015 Feb 19;11(2):e1004046. doi: 10.1371/journal.pcbi.1004046. eCollection 2015 Feb. PLoS Comput Biol. 2015. PMID: 25695764 Free PMC article.
-
Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function.Pept Sci (Hoboken). 2020 Jan;112(1):e24145. doi: 10.1002/pep2.24145. Epub 2020 Jan 2. Pept Sci (Hoboken). 2020. PMID: 33575525 Free PMC article.
References
-
- Hodges RS, Sodak J, Smillie LB, Jurasek L. Cold Spring Harbor Symp. Quant. Biol. 1972;37:299–310.
- McLachlan AD, Stewart M. J. Mol. Biol. 1975;98:293–304. - PubMed
-
- Crick FHS. Acta Crystallogr. 1953;6:689–697.
-
- Grigoryan G, Keating AE. Curr. Opin. Struct. Biol. 2008;18:477–483. - PMC - PubMed
- Woolfson DN. Adv. Protein Chem. 2005;70:79–112. - PubMed
- Mason JM, Arndt KM. ChemBioChem. 2004;5:170–176. - PubMed
- Parry DAD, Bruce Fraser RD, Squire JM. J. Struct. Biol. 2008;163:258–269. - PubMed
- Lupas AN, Gruber M. Adv. Protein Chem. 2005;70:37–38. - PubMed
- Lupas A. Trends Biochem. Sci. 1996;21:375–382. - PubMed
- Cohen C, Parry DAD. Proteins. 1990;7:1–15. - PubMed
-
- Boyle AL, Woolfson DN. Chem. Soc. Rev. 2011;40:4295–4306. - PubMed
- Apostolovic B, Danial M, Klok HA. Chem. Soc. Rev. 2010;39:3541–3575. - PubMed
- Marsden HR, Kros A. Angew. Chem. Int. Ed. 2010;49:2988–3005. - PubMed
- Bromley EH, Channon K, Moutevelis E, Woolfson DN. ACS Chem. Biol. 2008;3:38–50. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources