Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;1823(12):2210-6.
doi: 10.1016/j.bbamcr.2012.08.019. Epub 2012 Sep 5.

Diacylglycerol kinase δ1 transiently translocates to the plasma membrane in response to high glucose

Affiliations
Free article

Diacylglycerol kinase δ1 transiently translocates to the plasma membrane in response to high glucose

Masato Takeuchi et al. Biochim Biophys Acta. 2012 Dec.
Free article

Abstract

The type II diacylglycerol kinases (DGKs) contain several functional domains such as a pleckstrin homology (PH) domain, two C1 domains and a sterile α-motif (SAM) domain. It was previously revealed that DGKδ contributes to hyperglycemia-induced peripheral insulin resistance and thereby exacerbate the severity of type 2 diabetes. Moreover, a high extracellular concentration of glucose activated DGKδ in skeletal muscle cells, which was followed by a reduction in the intracellular diacylglycerol levels and the inactivation of protein kinase Cα, the enzyme that phosphorylates and inactivates the insulin receptor. However, the intracellular behavior of DGKδ upon high glucose stimulation remains unclear. In this study, we found that DGKδ1, but not a splice variant DGKδ2 or the other type II DGKη1/2, translocated from the cytoplasm to the plasma membrane in human embryonic kidney HEK293 and mouse myoblast C2C12 cells within 5 min in response to high glucose levels. The translocation was inhibited by phosphatidylinositol 3-kinase inhibitors, LY294002 and GDC-0941, suggesting that the event is regulated via the phosphatidylinositol 3-kinase pathway. Moreover, we revealed that the PH and C1 domains are responsible for the plasma membrane translocation and that the SAM domain negatively regulates the translocation. These results indicate that DGKδ1 is the sole type II DGK isoform that responds rapidly and dynamically to high glucose levels.

PubMed Disclaimer

Publication types

LinkOut - more resources