Surface roughness and charge influence the uptake of nanoparticles: fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles
- PMID: 22976936
- DOI: 10.1002/mabi.201200166
Surface roughness and charge influence the uptake of nanoparticles: fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles
Abstract
The influence of surface roughness and charge on the cellular uptake of nanoparticles in HeLa cells is investigated with fluorescent, oppositely charged, rough, and smooth nanoparticles. Flow cytometry, cLSM, and TEM reveal that rough nanoparticles are internalized by the cells more slowly and by an unidentified uptake route as no predominant endocytosis route is blocked by a variety of inhibitory drugs, while the uptake of smooth nanoparticles is strongly dependent on dynamin, F-actin, and lipid-raft. Negatively charged nanoparticles are taken up to a higher extent than positively charged ones, independent of the surface roughness.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Polymeric nanoparticles of different sizes overcome the cell membrane barrier.Eur J Pharm Biopharm. 2013 Jun;84(2):265-74. doi: 10.1016/j.ejpb.2013.01.024. Epub 2013 Feb 16. Eur J Pharm Biopharm. 2013. PMID: 23422734
-
Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant.Angew Chem Int Ed Engl. 2013 Nov 18;52(47):12373-6. doi: 10.1002/anie.201305947. Epub 2013 Oct 2. Angew Chem Int Ed Engl. 2013. PMID: 24123666
-
Competitive cellular uptake of nanoparticles made from polystyrene, poly(methyl methacrylate), and polylactide.Macromol Biosci. 2012 Apr;12(4):454-64. doi: 10.1002/mabi.201100337. Epub 2012 Feb 23. Macromol Biosci. 2012. PMID: 22362704
-
Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells.Macromol Biosci. 2008 Dec 8;8(12):1135-43. doi: 10.1002/mabi.200800123. Macromol Biosci. 2008. PMID: 18698581
-
Engineered viral nanoparticles for flow cytometry and fluorescence microscopy applications.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012 Sep-Oct;4(5):511-24. doi: 10.1002/wnan.1177. Epub 2012 Jun 14. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012. PMID: 22700447 Review.
Cited by
-
Anticancer activity of ferulic acid-inorganic nanohybrids synthesized via two different hybridization routes, reconstruction and exfoliation-reassembly.ScientificWorldJournal. 2013 Dec 25;2013:421967. doi: 10.1155/2013/421967. eCollection 2013. ScientificWorldJournal. 2013. PMID: 24453848 Free PMC article.
-
Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake.PLoS One. 2015 Oct 30;10(10):e0141593. doi: 10.1371/journal.pone.0141593. eCollection 2015. PLoS One. 2015. PMID: 26517371 Free PMC article.
-
Proliferation of Human Cervical Cancer Cells Responds to Surface Properties of Bicomponent Polymer Coatings.Nanomaterials (Basel). 2025 May 9;15(10):716. doi: 10.3390/nano15100716. Nanomaterials (Basel). 2025. PMID: 40423106 Free PMC article.
-
Towards a rational design of solid drug nanoparticles with optimised pharmacological properties.J Interdiscip Nanomed. 2016 Sep;1(3):110-123. doi: 10.1002/jin2.21. Epub 2016 Sep 29. J Interdiscip Nanomed. 2016. PMID: 27774308 Free PMC article.
-
Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations.Appl In Vitro Toxicol. 2018 Jun 1;4(2):91-106. doi: 10.1089/aivt.2017.0034. Appl In Vitro Toxicol. 2018. PMID: 32953944 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources