Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish
- PMID: 22980325
- PMCID: PMC3517662
- DOI: 10.1016/j.chom.2012.08.003
Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish
Abstract
Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures







Comment in
-
Gut microbes make for fattier fish.Cell Host Microbe. 2012 Sep 13;12(3):259-61. doi: 10.1016/j.chom.2012.08.006. Cell Host Microbe. 2012. PMID: 22980321 Free PMC article.
Similar articles
-
Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models.mBio. 2014 Sep 30;5(5):e01530-14. doi: 10.1128/mBio.01530-14. mBio. 2014. PMID: 25271283 Free PMC article.
-
Visualization of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid.Chem Biol. 2012 Jul 27;19(7):913-25. doi: 10.1016/j.chembiol.2012.05.018. Epub 2012 Jun 28. Chem Biol. 2012. Retraction in: Chem Biol. 2015 Sep 17;22(9):1283. doi: 10.1016/j.chembiol.2015.09.003. PMID: 22749558 Free PMC article. Retracted.
-
Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet.J Agric Food Chem. 2018 Dec 5;66(48):12706-12718. doi: 10.1021/acs.jafc.8b05036. Epub 2018 Nov 20. J Agric Food Chem. 2018. PMID: 30411889
-
[Dietary fatty acids, intestinal microbiota and cancer].Bull Cancer. 2005 Jul;92(7):708-21. Bull Cancer. 2005. PMID: 16123009 Review. French.
-
The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.J Lipid Res. 2013 Sep;54(9):2325-40. doi: 10.1194/jlr.R036012. Epub 2013 Jul 2. J Lipid Res. 2013. PMID: 23821742 Free PMC article. Review.
Cited by
-
Multi-omics analysis revealed the differences in lipid metabolism of the gut between adult and juvenile yellowfin tuna (Thunnus albacares).Front Microbiol. 2024 Jan 11;14:1326247. doi: 10.3389/fmicb.2023.1326247. eCollection 2023. Front Microbiol. 2024. PMID: 38274759 Free PMC article.
-
Modulation of gut microbiota, blood metabolites, and disease resistance by dietary β-glucan in rainbow trout (Oncorhynchus mykiss).Anim Microbiome. 2022 Nov 20;4(1):58. doi: 10.1186/s42523-022-00209-5. Anim Microbiome. 2022. PMID: 36404315 Free PMC article.
-
MATE transport of the E. coli-derived genotoxin colibactin.Nat Microbiol. 2016 Jan 11;1:15009. doi: 10.1038/nmicrobiol.2015.9. Nat Microbiol. 2016. PMID: 27571755 Free PMC article.
-
Gut fungi of black-necked cranes (Grus nigricollis) respond to dietary changes during wintering.BMC Microbiol. 2024 Jun 29;24(1):232. doi: 10.1186/s12866-024-03396-0. BMC Microbiol. 2024. PMID: 38951807 Free PMC article.
-
The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders.Nutrients. 2022 Jan 31;14(3):624. doi: 10.3390/nu14030624. Nutrients. 2022. PMID: 35276983 Free PMC article. Review.
References
-
- Babin PJ, Vernier JM. Plasma lipoproteins in fish. J Lipid Res. 1989;30(4):467–489. - PubMed
-
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57(1):289–300.
Publication types
MeSH terms
Substances
Grants and funding
- P30 ES010126/ES/NIEHS NIH HHS/United States
- P01 DK078669/DK/NIDDK NIH HHS/United States
- HG4872/HG/NHGRI NIH HHS/United States
- R56 DK093399/DK/NIDDK NIH HHS/United States
- DK093399/DK/NIDDK NIH HHS/United States
- R01 DK081426/DK/NIDDK NIH HHS/United States
- GM095385/GM/NIGMS NIH HHS/United States
- R01 HG004872/HG/NHGRI NIH HHS/United States
- R56 GM063904/GM/NIGMS NIH HHS/United States
- DK091129/DK/NIDDK NIH HHS/United States
- HHMI/Howard Hughes Medical Institute/United States
- GM63904/GM/NIGMS NIH HHS/United States
- DK081426/DK/NIDDK NIH HHS/United States
- U01 HG004866/HG/NHGRI NIH HHS/United States
- R01 GM095385/GM/NIGMS NIH HHS/United States
- R01 DK093399/DK/NIDDK NIH HHS/United States
- T32 GM141804/GM/NIGMS NIH HHS/United States
- HG4866/HG/NHGRI NIH HHS/United States
- R01 GM063904/GM/NIGMS NIH HHS/United States
- DK78669/DK/NIDDK NIH HHS/United States
- F31 DK091129/DK/NIDDK NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials