Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan;186(1):47-53.
doi: 10.1016/0014-4827(90)90208-r.

Mechanisms for activation and subsequent removal of cytosolic Ca2+ in bradykinin-stimulated neuronal and glial cell lines

Affiliations

Mechanisms for activation and subsequent removal of cytosolic Ca2+ in bradykinin-stimulated neuronal and glial cell lines

G Reiser et al. Exp Cell Res. 1990 Jan.

Abstract

Mechanisms for activation and for removal of cytosolic Ca2+ after stimulation with bradykinin were investigated in two neural cell lines by measuring cytosolic Ca2+ activity and 45Ca2+ fluxes. In the neuronal (neuroblastoma x glioma hybrid) and in the glial (rat glioma) cell lines, the transient, bradykinin-induced rise in cytosolic Ca2+ activity (determined by fura-2 or indo-1 fluorescence) was blocked by a bradykinin B2 receptor antagonist. Ca2+ ionophores (ionomycin and 4-Br-A23187) caused a comparable transient rise in cytosolic Ca2+ activity. After addition of ionophores, the Ca2+ response to bradykinin was reduced or completely blocked in both cell lines. At the concentrations used, the ionophores primarily depleted intracellular Ca2+ stores and prevented refilling of the stores. Thus, the bradykinin-induced rise of cytosolic Ca2+ activity seems to be mostly due to Ca2+ release from internal stores. In the neuronal but not in the glial cell line, a brief stimulation by bradykinin of 45Ca2+ uptake was followed by a long-lasting inhibition below control values. Thus, in the neuronal cells bradykinin presumably blocks Ca2+ channels by a readily reversible, pertussis toxin-insensitive mechanism. Excess cytosolic Ca2+ of the bradykinin-stimulated cells is mostly not resequestered into the internal Ca2+ pool accessible to bradykinin, but is mainly extruded through the plasma membrane, as indicated by (i) stimulation of 45Ca2+ release by bradykinin, (ii) quick reduction by bradykinin of cellular 45Ca2+ content of cells preequilibrated with 45Ca2+, and (iii) diminution of the ionophore-inducible Ca2+ response after the addition of bradykinin.

PubMed Disclaimer

Publication types

LinkOut - more resources