What will diabetes genomes tell us?
- PMID: 22983892
- PMCID: PMC3489976
- DOI: 10.1007/s11892-012-0321-4
What will diabetes genomes tell us?
Abstract
A new generation of genetic studies of diabetes is underway. Following from initial genome-wide association (GWA) studies, more recent approaches have used genotyping arrays of more densely spaced markers, imputation of ungenotyped variants based on improved reference haplotype panels, and sequencing of protein-coding exomes and whole genomes. Experimental and statistical advances make possible the identification of novel variants and loci contributing to trait variation and disease risk. Integration of sequence variants with functional analysis is critical to interpreting the consequences of identified variants. We briefly review these methods and technologies and describe how they will continue to expand our understanding of the genetic risk factors and underlying biology of diabetes.
Conflict of interest statement
No potential conflicts of interest relevant to this article were reported.
Figures

Similar articles
-
Imputation-based assessment of next generation rare exome variant arrays.Pac Symp Biocomput. 2014:241-52. Pac Symp Biocomput. 2014. PMID: 24297551 Free PMC article.
-
1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data.Eur J Hum Genet. 2012 Jul;20(7):801-5. doi: 10.1038/ejhg.2012.3. Epub 2012 Feb 1. Eur J Hum Genet. 2012. PMID: 22293688 Free PMC article.
-
Genome-wide searching of rare genetic variants in WTCCC data.Hum Genet. 2010 Sep;128(3):269-80. doi: 10.1007/s00439-010-0849-9. Epub 2010 Jun 13. Hum Genet. 2010. PMID: 20549515 Free PMC article.
-
Rare-variant genome-wide association studies: a new frontier in genetic analysis of complex traits.Pharmacogenomics. 2013 Mar;14(4):413-24. doi: 10.2217/pgs.13.36. Pharmacogenomics. 2013. PMID: 23438888 Review.
-
Genotype Imputation in Genome-Wide Association Studies.Curr Protoc Hum Genet. 2019 Jun;102(1):e84. doi: 10.1002/cphg.84. Curr Protoc Hum Genet. 2019. PMID: 31216114 Review.
Cited by
-
Epigenetic modification and therapeutic targets of diabetes mellitus.Biosci Rep. 2020 Sep 30;40(9):BSR20202160. doi: 10.1042/BSR20202160. Biosci Rep. 2020. PMID: 32815547 Free PMC article. Review.
-
Pedigree-based random effect tests to screen gene pathways.BMC Proc. 2014 Jun 17;8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo):S100. doi: 10.1186/1753-6561-8-S1-S100. eCollection 2014. BMC Proc. 2014. PMID: 25519354 Free PMC article.
-
The study to understand the genetics of the acute response to metformin and glipizide in humans (SUGAR-MGH): design of a pharmacogenetic resource for type 2 diabetes.PLoS One. 2015 Mar 26;10(3):e0121553. doi: 10.1371/journal.pone.0121553. eCollection 2015. PLoS One. 2015. PMID: 25812009 Free PMC article. Clinical Trial.
-
Bringing genome-wide association findings into clinical use.Nat Rev Genet. 2013 Aug;14(8):549-58. doi: 10.1038/nrg3523. Epub 2013 Jul 9. Nat Rev Genet. 2013. PMID: 23835440 Review.
-
Transcriptomics in type 2 diabetes: Bridging the gap between genotype and phenotype.Genom Data. 2015 Dec 17;8:25-36. doi: 10.1016/j.gdata.2015.12.001. eCollection 2016 Jun. Genom Data. 2015. PMID: 27114903 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
- R01 DK093757/DK/NIDDK NIH HHS/United States
- R56 DK062370/DK/NIDDK NIH HHS/United States
- R01 HG000376/HG/NHGRI NIH HHS/United States
- R56 HG000376/HG/NHGRI NIH HHS/United States
- R01 DK062370/DK/NIDDK NIH HHS/United States
- DK62370/DK/NIDDK NIH HHS/United States
- RC2 DK088389/DK/NIDDK NIH HHS/United States
- U01 DK062370/DK/NIDDK NIH HHS/United States
- DK93757/DK/NIDDK NIH HHS/United States
- DK72193/DK/NIDDK NIH HHS/United States
- HG000376/HG/NHGRI NIH HHS/United States
- DK88389/DK/NIDDK NIH HHS/United States
- R01 DK072193/DK/NIDDK NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical