Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb;110(2):255-61.
doi: 10.1083/jcb.110.2.255.

Characterization of two populations of statin and the relationship of their syntheses to the state of cell proliferation

Affiliations

Characterization of two populations of statin and the relationship of their syntheses to the state of cell proliferation

G Ching et al. J Cell Biol. 1990 Feb.

Abstract

Statin has previously been identified to be a 57-kD protein present in the nuclei of quiescent and senescent human fibroblasts, but not in their replicating counterparts (Wang, E. 1985. J. Cell Biol. 100: 545-551). In the present report we demonstrate by immunoprecipitation analysis of fractionated cellular extracts the existence of two populations of statin. The Triton X-100-soluble statin is found in replicating sparse cultures as well as in quiescent confluent cultures and quiescent serum-starved cultures of young human fibroblasts, but the Triton X-100-insoluble, nuclear envelope-localized statin is present only in the quiescent cultures. Two-dimensional gel analysis of the immunoprecipitated cellular fractions reveals that both populations of statin have an isoelectric point of 5.3. Pulse-chase experiments show that statin is synthesized as a 57-kD polypeptide and is not processed from a precursor of different molecular mass. Experiments on serum stimulation of quiescent cells show that synthesis of the Triton X-100-insoluble statin decreases rapidly during the transition from the G0 to S phase, and that this decrease is accompanied by a slower reduction in synthesis of the Triton X-100-soluble statin. These results suggest that the cellular expression of the two populations of statin may be associated with the mechanisms controlling the transition between the growing state and the quiescent state and confirm the previous finding that the Triton X-100-insoluble, nuclear envelope-localized statin could be used as a marker for cells arrested at the G0 phase of the cell cycle.

PubMed Disclaimer

Similar articles

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Biol Chem. 1975 May 25;250(10):3845-53 - PubMed
    1. J Biol Chem. 1975 May 25;250(10):4007-21 - PubMed
    1. J Immunol. 1978 Dec;121(6):2228-34 - PubMed
    1. J Cell Biol. 1980 Mar;84(3):795-802 - PubMed

Publication types