Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012:2012:412040.
doi: 10.1155/2012/412040. Epub 2012 Sep 4.

Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy

Affiliations

Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy

Julio C Aguila et al. Stem Cells Int. 2012.

Abstract

Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Cell identity is represented as the resultant of the integration of signals that the receptive, undifferentiated cell is exposed to, in a temporal and spatial coordinated fashion.
Figure 2
Figure 2
During embryogenesis ventral midbrain dopamine neurons are born at the intersection of three signaling molecules, Shh, Wnt1 and Fgf8, that pattern the neural tube along rostrocaudal, dorsoventral and mediolateral axes. Sagittal and coronal views at the midbrain and spinal cord levels of the mouse embryo showing the expression patterns of these morphogens at E9.5. FP: floor plate; IsO: isthmic organizer; MB: midbrain; NC: notochord; OV: otic vesicle; RP: roof plate; SC: spinal cord; ZLI: zona limitans intermedia.
Figure 3
Figure 3
Customized rendering of the epigenetic landscape for ventral midbrain dopamine neurons representing the developmental program (downhill, black lines) and the reprogramming pathways back to pluripotency (red lines) and across mature fates (blue lines).

References

    1. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24(2):197–211. - PubMed
    1. Baba M, Nakajo S, Tu PH, et al. Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. American Journal of Pathology. 1998;152(4):879–884. - PMC - PubMed
    1. Wakabayashi K, Takahashi H, Ohama E, Ikuta F. Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathologica. 1990;79(6):581–583. - PubMed
    1. Burke RE, Dauer WT, Vonsattel JPG. A critical evaluation of the Braak staging scheme for Parkinson’s disease. Annals of Neurology. 2008;64(5):485–491. - PMC - PubMed
    1. Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron. 2004;44(4):601–607. - PubMed

LinkOut - more resources