Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct 1;51(19):10274-8.
doi: 10.1021/ic301241s. Epub 2012 Sep 18.

Site-isolated redox reactivity in a trinuclear iron complex

Affiliations

Site-isolated redox reactivity in a trinuclear iron complex

Emily V Eames et al. Inorg Chem. .

Abstract

The symmetric, high-spin triiron complex ((Ph)L)Fe(3)(THF)(3) reacts with mild chemical oxidants (e.g., Ph(3)C-X, I(2)) to afford an asymmetric core, where one iron bears the halide ligand ((Ph)L)Fe(3)X(L) and the hexadentate ((Ph)L = MeC(CH(2)NPh-o-NPh)(3)) ligand has undergone significant rearrangement. In the absence of a suitable trapping ligand, the chlorine and bromine complexes form (μ-X)(2)-bridged structures of the type [((Ph)L)Fe(3)(μ-X)](2). In the trinuclear complexes, the halide-bearing iron site sits in approximate trigonal-bipyramidal (tbp) geometry, formed by two ((Ph)L) anilides and an exogenous solvent molecule. The two distal iron atoms reside in distorted square-planar sites featuring a short Fe-Fe separation at 2.301 Å, whereas the distance to the tbp site is substantially elongated (2.6-2.7 Å). Zero-field, (57)Fe Mössbauer analysis reveals the diiron unit as the locus of oxidation, while the tbp site bearing the halide ligand remains divalent. Magnetic data acquired for the series reveal that the oxidized diiron unit comprises a strongly coupled S = (3)/(2) unit that is weakly ferromagnetically coupled to the high-spin (S = 2) ferrous site, giving an overall S = (7)/(2) ground state for the trinuclear units.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Solid-state structures for (a) (PhL)Fe3Cl(py) (3), (b) [(PhL)Fe3(µ-Br)]2 (4), and (c) (PhL)Fe3I(thf) (6) with the thermal ellipsoids set at the 50% probability level (hydrogen atoms, and solvent molecules omitted for clarity; Fe orange, C black, H white, N blue, O red, Cl green, Br brown, I magenta). Bond lengths (Å) for 3: Fe1-Fe2, 2.7303(8); Fe1-Fe3, 2.6534(8); Fe2-Fe3, 2.2955(8); Fe1-Cl, 2.3333(11); Fe1-Npy, 2.066(3); for 4: Fe1-Fe2, 2.5871(7); Fe1-Fe3, 2.5873(7); Fe2-Fe3, 2.3504(7); Fe1-Br1, 2.5715(6), Fe1-Br2, 2.4670(6); Fe1-Fe1, 3.5810(11); for 6: Fe1-Fe2, 2.6026(10); Fe1-Fe3, 2.6971(11); Fe2-Fe3, 2.3079(10); Fe1-I, 2.6695(9); Fe1-O, 2.024(4).
Figure 2
Figure 2
(a) Zero-field 57Fe Mössbauer spectrum obtained at 90 K and spectral fits (δ, |ΔEQ| (mm/s)) for 3 (component 1 (magenta): 0.83, 1.67, 33%; component 2 (green): 0.29, 2.44, 33%; component 3 (blue): 0.20, 2.79, 33%). (b) Variable-temperature magnetic susceptibility data for 2 (diamonds) and 3 (circles) collected in an applied dc field of 0.1 T. Solid lines represent simulations to the data as described in the text. (c) Plot of reduced magnetization for 5 between 1.8 and 10 K at applied fields of 1–7 T.
Scheme 1
Scheme 1
Scheme 2
Scheme 2

Similar articles

Cited by

References

    1. Nitrogenase: Burgess BK, Lowe DJ. Chem. Rev. 1996;96:2983–3012. Dos Santos PC, Igarashi RY, Lee HI, Hoffman BM, Seefeldt LC, Dean DR. Acc. Chem. Res. 2005;38:208–214. Hoffman BM, Dean DR, Seefeldt LC. Acc. Chem. Res. 2009;42:609–619. Photosystem II: Nugent J, editor. Biochim. Biophys. Acta. 2001;1503:1. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. Science. 2004;303:1831. Iwata S, Barber J. Curr. Opin. Struct. Biol. 2004;14:447. N2O reductase: Brown K, Djinovic-Carugo K, Haltia T, Cabrito I, Saraste M, Moura JJG, Moura I, Tegoni M, Cambillau C. J. Biol. Chem. 2000;275:41133. Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJ, Moura I, Cambillau C. Nat. Struct. Biol. 2000;7:191. Chen P, George SD, Cabrito I, Antholine WE, Moura JG, Moura I, Hedman B, Hodgson KO, Solomon EI. J. Am. Chem. Soc. 2002;124:744.

    1. Fontecilla-Camps JC. J. Biol. Inorg. Chem. 1996;96:3031.
    2. Siegbahn PEM. Inorg. Chem. 2000;39:2923. - PubMed
    3. Huniar U, Ahlrichs R, Coucouvanis D. J. Am. Chem. Soc. 2004;126:2588. - PubMed
    1. Zhao Q, Betley TA. Angew. Chem. Int. Ed. . 2011;50:709–712. - PubMed
    2. Powers TM, Fout AR, Zheng SL, Betley TA. J. Am. Chem. Soc. 2011;133:3336. - PMC - PubMed
    3. Zhao Q, Harris TD, Betley TA. J. Am. Chem. Soc. 2011;133:8293. - PubMed
    4. Harris TD, Zhao Q, Hernández Sánchez R, Betley TA. Chem. Commun. 2011;47:6344. - PubMed
    5. Harris TD, Betley TA. J. Am. Chem. Soc. 2011;133:13852. - PubMed
    6. Fout AR, Zhao Q, Xiao DJ, Betley TA. J. Am. Chem. Soc. 2011;133:16750. - PMC - PubMed
    7. Eames EV, Harris TD, Betley TA. Chem. Sci. 2012;3:407.
    1. Adams RD. J. Organometallic Chem. 2000;600:1–6.
    2. Suzuki H. Eur. J. Inorg. Chem. 2002:1009–1023.
    3. Dyson PJ. Coord. Chem. Rev. 2004;248:2443–2458.
    4. Pap JS, DeBeer George S, Berry JF. Angew. Chem. Int. Ed. 2008;47:10102–10105. - PubMed
    1. Gomberg M. J. Am. Chem. Soc. 1900;22:757.

Publication types