Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan;63(1):190-7.
doi: 10.1152/jn.1990.63.1.190.

Changes in muscle stiffness produced by motor units of different types in peroneus longus muscle of cat

Affiliations

Changes in muscle stiffness produced by motor units of different types in peroneus longus muscle of cat

J Petit et al. J Neurophysiol. 1990 Jan.

Abstract

1. The effects of maximal tetanic contractions of varying numbers of motor units of the same type [slow (S), fast fatigue-resistant (FR), or fast fatigable (FF)] on the mechanical responses to muscle stretch were studied in the peroneus longus muscle of anesthetized cats. 2. Two types of stiffness measurements were made: 1) an average stiffness, defined as the tension change from the beginning to end of a 0.5-mm ramp stretch; and 2) a dynamic stiffness, defined as the ratio of peak-to-peak tension to amplitude of a maintained 85-microns sinusoidal stretch at frequencies of 10-80 Hz. 3. Contractions of slow and fast units elicited different increases in average stiffness. Type S units, although developing much smaller tetanic tensions than fast ones, produced a resistance to stretch comparable with or greater than that of fast units developing much higher tensions. 4. For comparable tetanic tensions, slow units also elicited a greater dynamic stiffness than fast units. During sinusoidal stretch, changes in muscle tension led changes in muscle length during contraction of S units, but the reverse was observed for frequencies 30-50 Hz during contraction of FF units. This suggests that the latter perform oscillatory work on the driving apparatus. 5. Type S units, whose low-threshold motoneurons are the first to be recruited, appear well adapted to play a role in posture and in slow movements because of the resistance they offer to forces tending to change joint position or to oppose the progression of slow movements.

PubMed Disclaimer

Publication types

LinkOut - more resources