Long-term and short-term evolutionary impacts of transposable elements on Drosophila
- PMID: 22997235
- PMCID: PMC3512147
- DOI: 10.1534/genetics.112.145714
Long-term and short-term evolutionary impacts of transposable elements on Drosophila
Abstract
Transposable elements (TEs) are considered to be genomic parasites and their interactions with their hosts have been likened to the coevolution between host and other nongenomic, horizontally transferred pathogens. TE families, however, are vertically inherited as integral segments of the nuclear genome. This transmission strategy has been suggested to weaken the selective benefits of host alleles repressing the transposition of specific TE variants. On the other hand, the elevated rates of TE transposition and high incidences of deleterious mutations observed during the rare cases of horizontal transfers of TE families between species could create at least a transient process analogous to the influence of horizontally transmitted pathogens. Here, we formally address this analogy, using empirical and theoretical analysis to specify the mechanism of how host-TE interactions may drive the evolution of host genes. We found that host TE-interacting genes actually have more pervasive evidence of adaptive evolution than immunity genes that interact with nongenomic pathogens in Drosophila. Yet, both our theoretical modeling and empirical observations comparing Drosophila melanogaster populations before and after the horizontal transfer of P elements, which invaded D. melanogaster early last century, demonstrated that horizontally transferred TEs have only a limited influence on host TE-interacting genes. We propose that the more prevalent and constant interaction with multiple vertically transmitted TE families may instead be the main force driving the fast evolution of TE-interacting genes, which is fundamentally different from the gene-for-gene interaction of host-pathogen coevolution.
Figures









Similar articles
-
Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense.Mol Biol Evol. 2013 Aug;30(8):1816-29. doi: 10.1093/molbev/mst081. Epub 2013 Apr 26. Mol Biol Evol. 2013. PMID: 23625890 Free PMC article.
-
Recurrent Gene Duplication Diversifies Genome Defense Repertoire in Drosophila.Mol Biol Evol. 2016 Jul;33(7):1641-53. doi: 10.1093/molbev/msw053. Epub 2016 Mar 14. Mol Biol Evol. 2016. PMID: 26979388 Free PMC article.
-
Transposable elements in natural populations of Drosophila melanogaster.Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1219-28. doi: 10.1098/rstb.2009.0318. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20308097 Free PMC article. Review.
-
Species-specific chromatin landscape determines how transposable elements shape genome evolution.Elife. 2022 Aug 23;11:e81567. doi: 10.7554/eLife.81567. Elife. 2022. PMID: 35997258 Free PMC article.
-
Silencing of Transposable Elements by piRNAs in Drosophila: An Evolutionary Perspective.Genomics Proteomics Bioinformatics. 2017 Jun;15(3):164-176. doi: 10.1016/j.gpb.2017.01.006. Epub 2017 Jun 8. Genomics Proteomics Bioinformatics. 2017. PMID: 28602845 Free PMC article. Review.
Cited by
-
Evolution and biological significance of flaviviral elements in the genome of the arboviral vector Aedes albopictus.Emerg Microbes Infect. 2019;8(1):1265-1279. doi: 10.1080/22221751.2019.1657785. Emerg Microbes Infect. 2019. PMID: 31469046 Free PMC article.
-
Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations.Genome Res. 2020 Apr;30(4):566-575. doi: 10.1101/gr.251546.119. Epub 2020 Apr 1. Genome Res. 2020. PMID: 32238416 Free PMC article.
-
RNA-Interference Pathways Display High Rates of Adaptive Protein Evolution in Multiple Invertebrates.Genetics. 2018 Apr;208(4):1585-1599. doi: 10.1534/genetics.117.300567. Epub 2018 Feb 1. Genetics. 2018. PMID: 29437826 Free PMC article.
-
Analysis of piRNA-mediated silencing of active TEs in Drosophila melanogaster suggests limits on the evolution of host genome defense.Mol Biol Evol. 2013 Aug;30(8):1816-29. doi: 10.1093/molbev/mst081. Epub 2013 Apr 26. Mol Biol Evol. 2013. PMID: 23625890 Free PMC article.
-
The Hmr and Lhr hybrid incompatibility genes suppress a broad range of heterochromatic repeats.PLoS Genet. 2014 Mar 20;10(3):e1004240. doi: 10.1371/journal.pgen.1004240. eCollection 2014 Mar. PLoS Genet. 2014. PMID: 24651406 Free PMC article.
References
-
- Adams M. D., Tarng R. S., Rio D. C., 1997. The alternative splicing factor PSI regulates P-element third intron splicing in vivo. Genes Dev. 11: 129–138 - PubMed
-
- Aminetzach Y. T., Macpherson J. M., Petrov D. A., 2005. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science 309: 764–767 - PubMed
-
- Andolfatto P., 2001. Contrasting patterns of X–linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Mol. Biol. Evol. 18: 279–290 - PubMed
-
- Anxolabéhère D., Kidwell M. G., Periquet G., 1988. Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Mol. Biol. Evol. 5: 252–269 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases