Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2012 Nov;86(4):765-9.
doi: 10.1111/mmi.12034. Epub 2012 Sep 24.

Prime time for minor subunits of the type II secretion and type IV pilus systems

Affiliations
Free article
Comment

Prime time for minor subunits of the type II secretion and type IV pilus systems

Lori L Burrows. Mol Microbiol. 2012 Nov.
Free article

Abstract

The type II secretion system (T2SS) exports folded proteins from the periplasms of Gram-negative bacteria. The type IV pilus system (T4PS) is a multifunctional machine used for adherence, motility and DNA transfer in bacteria and archaea. Partial sequence identity between the two systems suggests that they are related and might function via a similar mechanism, the dynamic assembly and disassembly of pseudopilus (T2SS) or pilus (T4PS) filaments. The major subunit in each system is thought to form the bulk of the (pseudo)pilus, while minor (low-abundance) subunits have proposed roles in assembly initiation, antagonism of disassembly, or modulation of (pseudo)pilus functional properties. In this issue, Cisneros et al. () extend their previous finding that pseudopilus assembly is primed by the minor pseudopilins, showing that the same proteins can initiate assembly of Escherichia coli T4P. Similarly, they show that the E. coli minor pilins prime the polymerization of T2S pseudopili, although unlike genuine pseudopili, the chimeric filaments did not support secretion. This work reinforces the notion of a common assembly mechanism for the T2S and T4P systems.

PubMed Disclaimer

Comment on

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources