Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep 24:12:421.
doi: 10.1186/1471-2407-12-421.

Hypoxic enhancement of exosome release by breast cancer cells

Affiliations

Hypoxic enhancement of exosome release by breast cancer cells

Hamish W King et al. BMC Cancer. .

Abstract

Background: Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling.

Methods: Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant.

Results: Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions.

Conclusions: These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more exosomes into their microenvironment to promote their own survival and invasion.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Exosome isolation by ultracentrifugation and Exoquick.TMprecipitation from MCF7 conditioned media. (A, B) Transmission electron microscopy and CD63 immunolabelling of MCF7 exosomes isolated by ultracentrifugation (A) and ExoquickTM precipitation (B). (C) Nanoparticle tracking analysis (NTA) of MCF7 exosomes isolated by ultracentrifugation and ExoquickTM precipitation. Data represent the average size distribution profile of n = 4 for each purification method normalised to the total nanoparticle concentrations. Data for each individual sample derive from four different videos and analyses. (D) Immunoblotting of ultracentrifugation pellet for exosomal proteins CD63, TSG101, cofilin and flotillin-1.
Figure 2
Figure 2
Comparison of exosome isolation efficiency by ultracentrifugation and Exoquick.TMprecipitation. (A) Exosome fractions from ultracentrifugation or ExoquickTM precipitation were analysed by NTA. Nanoparticle concentrations per mL of original volume of media conditioned by 48 hour MCF7 culture (10.5 mL and 0.2 mL for ultracentrifugation and ExoquickTM respectively) were determined, and are expressed here relative to the ultracentrifugation results (n = 8; ± SEM). (B) CD63 immunoblot, performed under non-reducing conditions, of exosomes isolated by ultracentrifugation or ExoquickTM precipitation from 24 mL or 0.5 mL MCF7 conditioned media respectively. Exosome pellets were resuspended in equal volumes of PBS for both methods, and loading was controlled by volume. *** corresponds with P value < 0.001.
Figure 3
Figure 3
Hypoxic enhancement of exosome release by breast cancer cells. (A) MCF7, SKBR3 and MDA-MB 231 cells were cultured at 1% O2 for 48 hours. Exosomes were isolated from conditioned media by ExoquickTM precipitation. Nanoparticle concentrations were determined by NTA and expressed relative to the normoxic control. Data for each sample were derived from four different videos and analyses (n ≥ 3; ± SEM). (B) MCF7, SKBR3 and MDA-MB 231 cells were cultured at 0.1% O2 for 24 hours and exosomes were isolated and analysed as described in (A). (C) CD63 immunoblot of MCF7 ExoquickTM precipitants from a 48 hour culture under normoxia or 1% O2, including band intensity quantitation.(D) CD63 immunoblot of MDA-MB 231 ExoquickTM precipitants from a 24 hour culture under normoxia or 0.1% O2, including band intensity quantitation. (E, F) Nanoparticle size distribution profiles obtained by NTA for hypoxic (0.1% O2) MCF7 ExoquickTM precipitants were normalised to final cell counts for normoxia and hypoxia (E) and relative nanoparticle size distribution profiles were obtained by normalising to total nanoparticle concentration (F). All CD63 immunoblots were performed under non-reducing conditions as described previously [26]. Annotations *, **, and *** correspond with P values <0.05, <0.01 and <0.001 respectively.
Figure 4
Figure 4
Exosome release is modulated by induction of hypoxia inducible factor. (A) MDA-MB 231 breast cancer cells were treated with 1 mM DMOG for 24 hours. Exosomes were isolated and quantitated by NTA as previously described (n = 4; ± SEM). (B) MDA-MB 231 cells were transfected with negative control (NC) siRNA or siRNA targeting HIF-1α prior to exposure to 0.1% O2 for 24 hours. Exosomes were isolated by ExoquickTM and quantitated by NTA (n = 4; ± SEM). Annotations *, **, and *** correspond with P values <0.05, <0.01 and <0.001 respectively.
Figure 5
Figure 5
Cellular and exosomal microRNA expression levels in response to hypoxia. (A) Mean normalised expression levels of MCF7 cellular miRNAs as determined by miRNA-specific Taqman real-time RT-PCR assays in response to 1% O2 for 48 hours and normalised to RNU6B. Expression values are presented relative to normoxic control. (n = 3; ± SEM). (B, C) ExoquickTM precipitants isolated from MCF7 cell culture after 48 hours at 1% O2 were spiked with cel miR-54 and used for RNA extractions. This exosomal RNA was then assayed for miR-16, let7a, miR-210 and cel miR-54 by real-time RT-PCR and normalised to exogenous cel miR-54 (B) or endogenous miR-16 (C) (± SEM). Normoxia n = 4; Hypoxia n = 5. ** corresponds with P value < 0.01.

Similar articles

Cited by

References

    1. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–579. - PubMed
    1. Schorey JS, Bhatnagar S. Exosome Function: From Tumor Immunology to Pathogen Biology. Traffic. 2008;9(6):871–881. doi: 10.1111/j.1600-0854.2008.00734.x. - DOI - PMC - PubMed
    1. Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 2010;73(10):1907–1920. doi: 10.1016/j.jprot.2010.06.006. - DOI - PubMed
    1. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596. - DOI - PubMed
    1. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Curry WT, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–1476. doi: 10.1038/ncb1800. - DOI - PMC - PubMed

Publication types