Behavioral indices of breeding readiness in female European starlings correlate with immunolabeling for catecholamine markers in brain areas involved in sexual motivation
- PMID: 22999823
- DOI: 10.1016/j.ygcen.2012.09.007
Behavioral indices of breeding readiness in female European starlings correlate with immunolabeling for catecholamine markers in brain areas involved in sexual motivation
Abstract
In seasonally-breeding songbirds, lengthening photoperiod, increases in estradiol and exposure to male courtship facilitate breeding behavior in females in spring. However, there is extreme variability in the extent to which spring-condition females are attracted by male courtship or engage in nesting behavior. Here we explore possible links between catecholamines and individual differences in behaviors indicative of breeding readiness. Female European starlings were placed in conditions typical of the breeding season (spring-like) or the non-breeding season (fall-like). Although many females examined nesting locations, only a subset of spring-like females occupied nest sites. Labeling for dopamine-beta-hydroxylase (DBH; the enzyme involved in norepinephrine synthesis) in the ventromedial nucleus of the hypothalamus (VMH) was densest in females that acquired nest sites compared to spring-like females without nest sites or fall-like females. Within the group of spring-like females, nesting behaviors correlated positively with DBH labeling in VMH. Females with nest sites had the lowest density of DBH labeling in the ventral tegmental area, and labeling correlated negatively with spring-like female nesting behaviors. Labeling for tyrosine hydroxylase (TH; the rate limiting enzyme for catecholamine synthesis) in putative nucleus accumbens was lowest in spring-like females without nest sites, and labeling correlated positively with nesting behavior in spring-like females. TH labeling density in the medial preoptic nucleus was highest in fall-like females, but a trend was observed for a positive correlation between TH labeling and spring-like female nesting behaviors. These results link distinct patterns of catecholamine activity in brain regions implicated in sexual motivation to female breeding readiness.
Copyright © 2012 Elsevier Inc. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources