Contributions to membrane-embedded-protein diffusion beyond hydrodynamic theories
- PMID: 23005141
- DOI: 10.1103/PhysRevE.85.061921
Contributions to membrane-embedded-protein diffusion beyond hydrodynamic theories
Abstract
The diffusion coefficients of proteins embedded in a lipid membrane are traditionally described by the hydrodynamic Saffman-Delbrück theory, which predicts a weak dependence of the diffusion coefficient on protein radius, D∼lnR. Recent experiments have observed a stronger dependence, D∼1/R. This has led to speculation that the primary sources of drag on the protein are not hydrodynamic, but originate in coupling to other fields, such as lipid chain stretching or tilt. We discuss a generic model of a protein coupled to a nonconserved scalar order parameter (e.g., chain stretching), and show that earlier results may not be as universal as previously believed. In particular, we note that the drag depends on the way the protein-order parameter coupling is imposed. In this model, D∼1/R can be obtained if the protein is much larger than the order parameter correlation length. However, if we modify the model to include advection of the order parameter, which is a more appropriate assumption for a fluid membrane, we find that the entrainment of the order parameter by the protein's motion significantly changes the scaling of the diffusion coefficient. For parameters appropriate to protein diffusion, the Saffman-Delbrück-like scaling is restored, but with an effective radius for the protein that depends on the order parameter's correlation length. This qualitative difference suggests that hydrodynamic effects cannot be neglected in the computation of drag on a protein interacting with the membrane.
Similar articles
-
Size-dependent diffusion of membrane inclusions.Biophys J. 2006 Oct 1;91(7):2393-8. doi: 10.1529/biophysj.106.087031. Epub 2006 Jul 7. Biophys J. 2006. PMID: 16829562 Free PMC article.
-
Calculating hydrodynamic interactions for membrane-embedded objects.J Chem Phys. 2014 Sep 28;141(12):124711. doi: 10.1063/1.4896180. J Chem Phys. 2014. PMID: 25273465
-
Corrections to the Saffman-Delbruck mobility for membrane bound proteins.Biophys J. 2007 Dec 1;93(11):L49-51. doi: 10.1529/biophysj.107.119222. Epub 2007 Sep 14. Biophys J. 2007. PMID: 17872958 Free PMC article.
-
Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects.Q Rev Biophys. 2011 Nov;44(4):391-432. doi: 10.1017/S0033583511000047. Epub 2011 Jul 1. Q Rev Biophys. 2011. PMID: 21729348 Review.
-
Conditions for extreme sensitivity of protein diffusion in membranes to cell environments.Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15002-7. doi: 10.1073/pnas.0606992103. Epub 2006 Sep 28. Proc Natl Acad Sci U S A. 2006. PMID: 17008402 Free PMC article. Review.
Cited by
-
Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.Chem Phys Lipids. 2013 Jul-Aug;172-173:67-77. doi: 10.1016/j.chemphyslip.2013.04.005. Epub 2013 May 20. Chem Phys Lipids. 2013. PMID: 23701821 Free PMC article.
-
Diffusion in phospholipid bilayer membranes: dual-leaflet dynamics and the roles of tracer-leaflet and inter-leaflet coupling.Proc Math Phys Eng Sci. 2014 Jul 8;470(2167):20130843. doi: 10.1098/rspa.2013.0843. Proc Math Phys Eng Sci. 2014. PMID: 25002822 Free PMC article.
-
Saffman-Delbrück and beyond: A pointlike approach.Eur Phys J E Soft Matter. 2019 Dec 17;42(12):156. doi: 10.1140/epje/i2019-11922-8. Eur Phys J E Soft Matter. 2019. PMID: 31834595
-
Modeling Receptor Motility along Advecting Lipid Membranes.Membranes (Basel). 2022 Jun 25;12(7):652. doi: 10.3390/membranes12070652. Membranes (Basel). 2022. PMID: 35877855 Free PMC article. Review.
-
Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes.J Chem Phys. 2015 Dec 28;143(24):243113. doi: 10.1063/1.4932980. J Chem Phys. 2015. PMID: 26723598 Free PMC article.