Warming shifts top-down and bottom-up control of pond food web structure and function
- PMID: 23007089
- PMCID: PMC3479752
- DOI: 10.1098/rstb.2012.0243
Warming shifts top-down and bottom-up control of pond food web structure and function
Abstract
The effects of global and local environmental changes are transmitted through networks of interacting organisms to shape the structure of communities and the dynamics of ecosystems. We tested the impact of elevated temperature on the top-down and bottom-up forces structuring experimental freshwater pond food webs in western Canada over 16 months. Experimental warming was crossed with treatments manipulating the presence of planktivorous fish and eutrophication through enhanced nutrient supply. We found that higher temperatures produced top-heavy food webs with lower biomass of benthic and pelagic producers, equivalent biomass of zooplankton, zoobenthos and pelagic bacteria, and more pelagic viruses. Eutrophication increased the biomass of all organisms studied, while fish had cascading positive effects on periphyton, phytoplankton and bacteria, and reduced biomass of invertebrates. Surprisingly, virus biomass was reduced in the presence of fish, suggesting the possibility for complex mechanisms of top-down control of the lytic cycle. Warming reduced the effects of eutrophication on periphyton, and magnified the already strong effects of fish on phytoplankton and bacteria. Warming, fish and nutrients all increased whole-system rates of net production despite their distinct impacts on the distribution of biomass between producers and consumers, plankton and benthos, and microbes and macrobes. Our results indicate that warming exerts a host of indirect effects on aquatic food webs mediated through shifts in the magnitudes of top-down and bottom-up forcing.
Figures




Similar articles
-
Bottom-up and top-down effects of browning and warming on shallow lake food webs.Glob Chang Biol. 2019 Feb;25(2):504-521. doi: 10.1111/gcb.14521. Epub 2018 Dec 14. Glob Chang Biol. 2019. PMID: 30430702
-
Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.Water Res. 2018 Nov 1;144:304-311. doi: 10.1016/j.watres.2018.07.055. Epub 2018 Jul 23. Water Res. 2018. PMID: 30071399
-
Warming modifies trophic cascades and eutrophication in experimental freshwater communities.Ecology. 2012 Jun;93(6):1421-30. doi: 10.1890/11-1595.1. Ecology. 2012. PMID: 22834382
-
Harmful freshwater algal blooms, with an emphasis on cyanobacteria.ScientificWorldJournal. 2001 Apr 4;1:76-113. doi: 10.1100/tsw.2001.16. ScientificWorldJournal. 2001. PMID: 12805693 Free PMC article. Review.
-
Fatty acid trophic markers in the pelagic marine environment.Adv Mar Biol. 2003;46:225-340. doi: 10.1016/s0065-2881(03)46005-7. Adv Mar Biol. 2003. PMID: 14601414 Review.
Cited by
-
Seasonal Regime Shift in the Viral Communities of a Permafrost Thaw Lake.Viruses. 2020 Oct 22;12(11):1204. doi: 10.3390/v12111204. Viruses. 2020. PMID: 33105728 Free PMC article.
-
Active microbiome structure and its association with environmental factors and viruses at different aquatic sites of a high-altitude wetland.Microbiologyopen. 2019 Mar;8(3):e00667. doi: 10.1002/mbo3.667. Epub 2018 Jul 30. Microbiologyopen. 2019. PMID: 30062777 Free PMC article.
-
Effects of temporal abiotic drivers on the dynamics of an allometric trophic network model.Ecol Evol. 2023 Mar 23;13(3):e9928. doi: 10.1002/ece3.9928. eCollection 2023 Mar. Ecol Evol. 2023. PMID: 36969931 Free PMC article.
-
Predominant Non-additive Effects of Multiple Stressors on Autotroph C:N:P Ratios Propagate in Freshwater and Marine Food Webs.Front Microbiol. 2018 Jan 30;9:69. doi: 10.3389/fmicb.2018.00069. eCollection 2018. Front Microbiol. 2018. PMID: 29441051 Free PMC article. Review.
-
Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems.Biol Lett. 2015 Dec;11(12):20150785. doi: 10.1098/rsbl.2015.0785. Biol Lett. 2015. PMID: 26631247 Free PMC article.
References
-
- Coulson T., MacNulty D. R., Stahler D. R., vonHoldt B., Wayne R. K., Smith D. W. 2011. Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334, 1275–127810.1126/science.1209441 (doi:10.1126/science.1209441) - DOI - DOI - PubMed
-
- Vinebrooke R. D., Cottingham K. L., Norberg J., Scheffer M., Dodson S. I., Maberly S. C., Sommer U. 2004. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104, 451–45710.1111/j.0030-1299.2004.13255.x (doi:10.1111/j.0030-1299.2004.13255.x) - DOI - DOI
-
- Christensen M. R., Graham M. D., Vinebrooke R. D., Findlay D. L., Paterson M. J., Turner M. A. 2006. Multiple anthropogenic stressors cause ecological surprises in boreal lakes. Glob. Change Biol. 12, 2316–232210.1111/j.1365-2486.2006.01257.x (doi:10.1111/j.1365-2486.2006.01257.x) - DOI - DOI
-
- Suttle K. B., Thomsen M. A., Power M. E. 2007. Species interactions reverse grassland responses to changing climate. Science 315, 640–64210.1126/science.1136401 (doi:10.1126/science.1136401) - DOI - DOI - PubMed
-
- Bothwell M. L., Sherbot D. M. J., Pollock C. M. 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265, 97–10010.1126/science.265.5168.97 (doi:10.1126/science.265.5168.97) - DOI - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources