Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;24(5):1613-22.
doi: 10.1007/s00198-012-2142-3. Epub 2012 Sep 26.

Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men

Affiliations

Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men

M Nilsson et al. Osteoporos Int. 2013 May.

Abstract

In this population-based study of 24-year-old men, we have investigated the association between sport-specific exercise loading and different bone parameters. We reveal that the association between exercise loading and bone parameters is sport-specific, indicating that nonspecific resistance exercise does not impact bone density, geometry, or microstructure in young men.

Introduction: In this cross-sectional study, the association between nonspecific resistive exercise and areal and volumetric bone density, bone geometry, or bone microstructure was investigated in young adult men.

Methods: A total of 184 male athletes, 24.0 ± 0.6 years of age (mean ± SD), representing nonspecific resistive exercise and soccer (proportion of recreational athletes, 93.4 and 7.7 %, respectively), and 177 nonathletic age-matched controls were measured with dual-energy X-ray absorptiometry. Radius and tibia were measured by peripheral quantitative computed tomography (pQCT) at the diaphysis and by three-dimensional pQCT at the metaphysis.

Results: Men in the nonspecific resistive exercise group had higher grip strength(9.1 % or 0.4 SD) and higher lean mass(5.6 % or 0.5 SD) than those in the nonathletic group(p < 0.01 and p < 0.001, respectively). However, men who participated in nonspecific resistive exercise did not have higher bone density or a more favorable bone microstructure or geometry than their nonathletic referents. In contrast, men playing soccer had higher areal bone mineral density (aBMD) at the femoral neck (19.5 % or 1.2 SD) and lumbar spine (12.6 % or 1.0 SD), as well as larger cortical cross-sectional area (16.4 % or 1.1 SD) and higher trabecular bone volume fraction (14.5 % or 0.9 SD), as a result of increased trabecular number (8.7 % or 0.6 SD) and thickness (5.7 % or 0.4 SD) at the tibia than men in the nonathletic group(p < 0.001).

Conclusions: Weight-bearing exercise with impacts from varying directions (playing soccer) is associated with aBMD and volumetric BMD, cortical bone geometry, as well as trabecular microstructure of weight-bearing bone. Nonspecific recreational resistance exercise does not appear to be a strong determinant of bone density, geometry, or microstructure in young adult men.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
a, b Sport-specific association between exercise loading and grip strength or lean mass. One-way ANOVA followed by Tukey’s post hoc test was used for evaluating differences between the nonathletic, resistance training, and soccer-playing groups of young adult men. Values are given as mean difference (SD ± 95 % CI) compared to the mean of the nonathletic group, represented by the 0 line
Fig. 2
Fig. 2
a, b Sport-specific association between exercise loading and aBMD. One-way ANOVA followed by Tukey’s post hoc test was used for evaluating differences between the nonathletic, resistance training, and soccer-playing groups of young adult men. Values are given as mean difference (SD ± 95 % CI) compared to the mean of the nonathletic group, represented by the 0 line
Fig. 3
Fig. 3
ad Sport-specific association between exercise loading and volumetric density, geometry, or microstructure in weight-bearing bone. One-way ANOVA followed by Tukey’s post hoc test was used for evaluating differences between the nonathletic, resistance training, and soccer-playing groups of young adult men. Values are given as mean difference (SD ± 95 % CI) compared to the mean of the nonathletic group, represented by the 0 line

References

    1. Rizzoli R, Bonjour JP, Ferrari SL. Osteoporosis, genetics and hormones. J Mol Endocrinol. 2001;26:79–94. doi: 10.1677/jme.0.0260079. - DOI - PubMed
    1. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9. doi: 10.1002/ar.1092190104. - DOI - PubMed
    1. Nikander R, Sievänen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47. doi: 10.1186/1741-7015-8-47. - DOI - PMC - PubMed
    1. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. Peak bone mass. Osteoporos Int. 2000;11:985–1009. doi: 10.1007/s001980070020. - DOI - PubMed
    1. Heinonen A, Oja P, Kannus P, Sievanen H, Haapasalo H, Manttari A, Vuori I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995;17:197–203. doi: 10.1016/8756-3282(95)00151-3. - DOI - PubMed

MeSH terms