Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov;153(11):5130-6.
doi: 10.1210/en.2012-1429. Epub 2012 Sep 26.

Kisspeptin and the hypothalamic control of reproduction: lessons from the human

Affiliations
Review

Kisspeptin and the hypothalamic control of reproduction: lessons from the human

Jyothis T George et al. Endocrinology. 2012 Nov.

Abstract

The hypothalamic hormone GnRH is a central driver of pituitary gonadotropin secretion, controlling pulsatile gonadotropin secretion, modulating gonadal steroid feedback, and bringing about full fertility in the adult. Thus, understanding GnRH neuronal regulation is essential to understanding the neurohumoral control of human reproduction. Genetic tools were used in patients with GnRH deficiency (i.e. idiopathic hypogonadotropic hypogonadism), a clinical syndrome that results from the failure of a normal pattern of pulsatile GnRH, to discover upstream modulators of GnRH secretion (1). In 2003, homozygosity mapping of two consanguineous pedigrees led to the identification of loss of function mutations in KISS1R (a G protein coupled receptor) by two groups (2, 3). In parallel, the Kiss1r(-/-) mouse was shown to be a phenocopy of the human GnRH-deficient state, demonstrating that the function of KISS1R/Kiss1r is conserved across mammalian species (4). Just before these human genetic discoveries, the ligand for kisspeptin-1 receptor [KISS1R; also known as G protein coupled receptor 54 (GPR54)], was discovered to be kisspeptin. Soon thereafter a large array of experimental studies began assembling genetic, expression, physiologic, transgenic, knockdown, and electrophysiological data to characterize the physiology of kisspeptin and its seminal role in modulating GnRH release.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Seminara SB, Hayes FJ, Crowley WF., Jr 1998. Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations. Endocr Rev 19:521–539 - PubMed
    1. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. 2003. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972–10976 - PMC - PubMed
    1. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MB, Crowley WF, Jr, Aparicio SA, Colledge WH. 2003. The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627 - PubMed
    1. Lapatto R, Pallais JC, Zhang D, Chan YM, Mahan A, Cerrato F, Le WW, Hoffman GE, Seminara SB. 2007. Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology 148:4927–4936 - PubMed
    1. Oakley AE, Clifton DK, Steiner RA. 2009. Kisspeptin signaling in the brain. Endocr Rev 30:713–743 - PMC - PubMed

Publication types

MeSH terms