Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan;258(1 Pt 1):C189-93.
doi: 10.1152/ajpcell.1990.258.1.C189.

Ca2(+)-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes

Affiliations

Ca2(+)-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes

M Näbauer et al. Am J Physiol. 1990 Jan.

Abstract

In cardiac muscle, entry of Ca2+ through the voltage-gated Ca2+ channel and its interaction with an intracellular site are thought to trigger the release of the intracellular Ca2+ pools and to activate contraction. The availability of a novel "caged calcium" compound, and its effective use in neuronal and heart cells to modulate Ca2+ channel and contraction, made it possible to examine directly the Ca2(+)-induced Ca2+ release hypothesis in intact mammalian cardiac myocytes. We used the caged Ca2+ compound DM-nitrophen, which on photolysis, rapidly (less than 200 microseconds) changes its Ca2(+)-binding affinity from 3 X 10(-9) to 2 X 10(-3) M at pH 7.0. In isolated whole cell clamped guinea pig ventricular myocytes dialyzed with unphotolyzed DM-nitrophen (Ca2+ buffered to values less than 10(-7) M), we found that a 160-microseconds light pulse photoreleased sufficient Ca2+ to activate contraction. Photorelease of Ca2+ failed to activate significant contraction in myocytes pretreated with caffeine, supporting the idea that the release of Ca2+ from intracellular pools was necessary to generate tension. However, photorelease of Ca2+ after the depolarization-induced Ca2+ release failed to suppress contraction, as predicted from the Ca2(+)-induced inactivation hypothesis. The failure to suppress contraction was not sufficient to definitively reject the Ca2(+)-induced inactivation hypothesis, since the intracellular Ca2+ concentration may not have risen sufficiently to inactivate the release channel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources