Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan 15;265(2):555-62.
doi: 10.1042/bj2650555.

Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y

Affiliations

Muscarinic-receptor-mediated changes in intracellular Ca2+ and inositol 1,4,5-trisphosphate mass in a human neuroblastoma cell line, SH-SY5Y

D G Lambert et al. Biochem J. .

Abstract

This study reports increased intracellular Ca2+ and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in response to muscarinic-cholinergic stimulation of human neuroblastoma (SH-SY5Y) cells. Carbachol stimulation leads to a rapid increase in intracellular Ca2+ and Ins(1,4,5)P3 mass, both reaching a peak at around 10 s and then declining to a new maintained phase significantly above basal. Dose-response analysis of peak and plateau phases of intracellular Ca2+ shows different agonist potencies for both phases, carbachol being more potent for the plateau phase. The plateau-phase intracellular Ca2+ was dependent on extracellular Ca2+, which is admitted to the cell through a non-voltage-sensitive Ni2(+)-blockable Ca2+ channel. Using a Mn2+ quench protocol, we have shown that Ca2+ entry occurs early during the discharge of the internal stores. The plateau phase (Ca2(+)-channel opening) is dependent on the continued presence of agonist, since addition of atropine closes the Ca2+ channel and intracellular Ca2+ declines rapidly back to basal. We also failed to detect a refilling transient when we added back Ca2+ after intracellular Ca2+ had reached a peak and then declined in Ca2(+)-free conditions. These data strongly suggest that muscarinic stimulation of SH-SY5Y cells leads to a rapid release of Ca2+ from an Ins(1,4,5)P3-sensitive internal store and a parallel early entry of Ca2+ across the plasma membrane.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9856-60 - PubMed
    1. EMBO J. 1987 Jan;6(1):49-54 - PubMed
    1. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1429-35 - PubMed
    1. FEBS Lett. 1989 Jan 2;242(2):337-40 - PubMed
    1. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 26;320(1199):281-98 - PubMed

Publication types