HiCNorm: removing biases in Hi-C data via Poisson regression
- PMID: 23023982
- PMCID: PMC3509491
- DOI: 10.1093/bioinformatics/bts570
HiCNorm: removing biases in Hi-C data via Poisson regression
Abstract
Summary: We propose a parametric model, HiCNorm, to remove systematic biases in the raw Hi-C contact maps, resulting in a simple, fast, yet accurate normalization procedure. Compared with the existing Hi-C normalization method developed by Yaffe and Tanay, HiCNorm has fewer parameters, runs >1000 times faster and achieves higher reproducibility.
Availability: Freely available on the web at: http://www.people.fas.harvard.edu/∼junliu/HiCNorm/.
Contact: jliu@stat.harvard.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
References
-
- Akaike H. A new look at the statistical model identification. IEEE Trans. Automat. Control. 1974;19:716–723.
-
- McCullagh P, Nelder JA. Generalized Linear Models. London: Chapman & Hall/CRC; 1989.
-
- Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet. 2011;43:1059–1065. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
