Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Sep;8(9):e1002894.
doi: 10.1371/journal.ppat.1002894. Epub 2012 Sep 13.

The battle over mTOR: an emerging theatre in host-pathogen immunity

Affiliations

The battle over mTOR: an emerging theatre in host-pathogen immunity

Sunil Martin et al. PLoS Pathog. 2012 Sep.
No abstract available

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Reciprocal consequences of mTOR activation in APCs and T cells may be host protective or disease promotive.
Innate (e.g. TLRs) or adaptive signals (e.g. CD40) trigger the PI3 kinase-Akt-mTOR signaling cascade in the APCs. Activation of mTORc1 leads to the phosphorylation of 4E-BP1/2 and initiation of protein translation. Pathogenic virulence factors such as Gp63 and antibiotic rapamycin (RAPA) inhibit mTOR activation and hence downregulate translation of type I interferons and iNOS (inducible nitric oxide synthase). Inhibition of 4E-BP1/2 can selectively upregulate translation and hence may be an attractive drug target. mTOR activation can also upregulate anti-inflammatory molecule IL-10 and inhibits the proinflammatory molecules, such as IL-12. IL-10 may skew Th0 cells to the disease-promoting Th2/Treg cells, whereas IL-12 and other proinflammatory cytokines can enhance the Th1/Th17 axis. Activation of mTOR signaling by inhibition of TSC1/TSC2 (tuberous sclerosis complex) or inhibition of Rictor (rapamycin-insensitive companion of mTOR, an essential component of mTORc1 signaling), especially at the early stage of an infection, can boost the propensity of these cells to be skewed towards Th1 phenotype. mTOR inhibition of Treg cells by rapamycin can augment expansion of Treg cells with increased suppressive capacity. This can be prevented by the activation of mTOR by inhibiting TSC1/2 or PTEN (Phosphatase and TENsin homolog) and may be a lucrative drug target at the later stages of an infection. On the other hand, inhibition of mTOR signaling in memory cells can improve the memory cell differentiation. Blockade of mTOR by pharmacological and genetic ablation enhances the quality and quantity of surviving memory. Targeted inhibition of mTOR in memory cells can thus be an attractive drug target especially at the later stage of infection.

References

    1. Delgoffe GM, Powell JD (2009) mTOR: taking cues from the immune microenvironment. Immunology 127: 459–465. - PMC - PubMed
    1. Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449: 827–834. - PubMed
    1. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, et al. (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16: 769–777. - PubMed
    1. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, et al. (2001) Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 21: 5899–5912. - PMC - PubMed
    1. Wada HG, Indelicato SR, Meyer L, Kitamura T, Miyajima A, et al. (1993) GM-CSF triggers a rapid, glucose dependent extracellular acidification by TF-1 cells: evidence for sodium/proton antiporter and PKC mediated activation of acid production. J Cell Physiol 154: 129–138. - PubMed

Publication types

Substances