A randomized trial of selenium supplementation and risk of type-2 diabetes, as assessed by plasma adiponectin
- PMID: 23028897
- PMCID: PMC3446875
- DOI: 10.1371/journal.pone.0045269
A randomized trial of selenium supplementation and risk of type-2 diabetes, as assessed by plasma adiponectin
Abstract
Background: Evidence that selenium affects the risk of type-2 diabetes is conflicting, with observational studies and a few randomized trials showing both lower and higher risk linked to the level of selenium intake and status. We investigated the effect of selenium supplementation on the risk of type-2 diabetes in a population of relatively low selenium status as part of the UK PRECISE (PREvention of Cancer by Intervention with SElenium) pilot study. Plasma adiponectin concentration, a recognised independent predictor of type-2 diabetes risk and known to be correlated with circulating selenoprotein P, was the biomarker chosen.
Methods: In a randomized, double-blind, placebo-controlled trial, five hundred and one elderly volunteers were randomly assigned to a six-month intervention with 100, 200 or 300 µg selenium/d as high-selenium or placebo yeast. Adiponectin concentration was measured by ELISA at baseline and after six months of treatment in 473 participants with one or both plasma samples available.
Results: Mean (SD) plasma selenium concentration was 88.5 ng/g (19.1) at baseline and increased significantly in the selenium-treatment groups. In baseline cross-sectional analyses, the fully adjusted geometric mean of plasma adiponectin was 14% lower (95% CI, 0-27%) in the highest than in the lowest quartile of plasma selenium (P for linear trend = 0.04). In analyses across randomized groups, however, selenium supplementation had no effect on adiponectin levels after six months of treatment (P = 0.96).
Conclusions: These findings are reassuring as they did not show a diabetogenic effect of a six-month supplementation with selenium in this sample of elderly individuals of relatively low selenium status.
Conflict of interest statement
References
-
- Wang XD (2008) Vatamaniuk MZ (2008) Wang SK (2008) Roneker CA (2008) Simmons RA (2008) et al. Molecular mechanisms for hyperinsulinaemia induced by overproduction of selenium-dependent glutathione peroxidase-1 in mice. Diabetologia 51 1515–24. - PubMed
-
- Speckmann B (2009) Sies H (2009) Steinbrenner H (2009) Attenuation of hepatic expression and secretion of selenoprotein P by metformin. Biochem Biophys Res Commun 387 158–63. - PubMed
-
- Misu H (2010) Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, et al. (2010) A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 12: 483–95. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
