Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2013 Jan 14;27(2):211-20.
doi: 10.1097/QAD.0b013e32835a9b80.

Bone mineral density in children and adolescents with perinatal HIV infection

Collaborators, Affiliations
Multicenter Study

Bone mineral density in children and adolescents with perinatal HIV infection

Linda A DiMeglio et al. AIDS. .

Abstract

Objective: To estimate prevalence of low bone mineral density (BMD) in perinatally HIV-infected (HIV+) and HIV-exposed but uninfected (HEU) children, and to determine predictors of BMD in HIV+.

Design: Cross-sectional analysis within a 15-site United States and Puerto Rico cohort study.

Methods: Total body and lumbar spine BMD were measured using dual energy-X-ray absorptiometry. BMD Z-scores accounted for bone age and sex. Multiple linear regression was used to evaluate differences in Z-scores by HIV status and for predictors of BMD in HIV+.

Results: 350 HIV+ and 160 HEU were enrolled. Mean age was 12.6 and 10.7 years for HIV+ and HEU, respectively. Most (87%) HIV+ were receiving HAART. More HIV+ than HEU had total body and lumbar spine Z-scores less than -2.0 (total body: 7 vs. 1%, P = 0.008; lumbar spine: 4 vs. 1%, P = 0.08). Average differences in Z-scores between HIV+ and HEU were attenuated after height and/or weight adjustment. Among HIV+, total body Z-scores were lower in those with higher CD4% and in those who ever used boosted protease inhibitors or lamivudine. Lumbar spine Z-scores were lower with higher peak viral load and CD4%, more years on HAART, and ever use of indinavir.

Conclusion: Rates of low BMD in HIV+ children were greater than expected based on normal population distributions. These differences were partially explained by delays in growth. As most HIV+ children in this study had not entered their pubertal growth spurt, prepubertal factors associated with BMD, magnified or carried forward, may result in sub-optimal peak BMD in adulthood.

PubMed Disclaimer

Conflict of interest statement

All authors declare no conflict of interest.

References

    1. Hazra R, Siberry GK, Mofenson LM. Growing up with HIV: children, adolescents, and young adults with perinatally acquired HIV infection. Annu Rev Med. 2010;61:169–185. - PubMed
    1. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–2174. - PubMed
    1. McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, Huang JS, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51(8):937–946. - PMC - PubMed
    1. Paccou J, Viget N, Legrout-Gerot I, Yazdanpanah Y, Cortet B. Bone loss in patients with HIV infection. Joint Bone Spine. 2009;76(6):637–641. - PubMed
    1. McKay H, Bailey D, Mirwald R, Davison K, Faulkner R. Peak bone mineral accrual and age at menarche in adolescent girls: a 6-year longitudinal study. J Pediatr. 1998;133(5):682–7. - PubMed

Publication types

MeSH terms

Substances