Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013:924:635-57.
doi: 10.1007/978-1-62703-017-5_25.

Multiscale molecular dynamics simulations of membrane proteins

Affiliations
Review

Multiscale molecular dynamics simulations of membrane proteins

Syma Khalid et al. Methods Mol Biol. 2013.

Abstract

The time and length scales accessible by biomolecular simulations continue to increase. This is in part due to improvements in algorithms and computing performance, but is also the result of the emergence of coarse-grained (CG) potentials, which complement and extend the information obtainable from fully detailed models. CG methods have already proven successful for a range of applications that benefit from the ability to rapidly simulate spontaneous self-assembly within a lipid membrane environment, including the insertion and/or oligomerization of a range of "toy models," transmembrane peptides, and single- and multi-domain proteins. While these simplified approaches sacrifice atomistic level detail, it is now straightforward to "reverse map" from CG to atomistic descriptions, providing a strategy to assemble membrane proteins within a lipid environment, prior to all-atom simulation. Moreover, recent developments have been made in "dual resolution" techniques, allowing different molecules in the system to be modeled with atomistic or CG resolution simultaneously.

PubMed Disclaimer

MeSH terms

LinkOut - more resources