Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Oct;39(10):6056-64.
doi: 10.1118/1.4752212.

Implementation of dual-energy technique for virtual monochromatic and linearly mixed CBCTs

Affiliations

Implementation of dual-energy technique for virtual monochromatic and linearly mixed CBCTs

Hao Li et al. Med Phys. 2012 Oct.

Abstract

Purpose: To implement dual-energy imaging technique for virtual monochromatic (VM) and linearly mixed (LM) cone beam CTs (CBCTs) and to demonstrate their potential applications in metal artifact reduction and contrast enhancement in image-guided radiation therapy (IGRT).

Methods: A bench-top CBCT system was used to acquire 80 kVp and 150 kVp projections, with an additional 0.8 mm tin filtration. To implement the VM technique, these projections were first decomposed into acrylic and aluminum basis material projections to synthesize VM projections, which were then used to reconstruct VM CBCTs. The effect of VM CBCT on the metal artifact reduction was evaluated with an in-house titanium-BB phantom. The optimal VM energy to maximize contrast-to-noise ratio (CNR) for iodine contrast and minimize beam hardening in VM CBCT was determined using a water phantom containing two iodine concentrations. The LM technique was implemented by linearly combining the low-energy (80 kVp) and high-energy (150 kVp) CBCTs. The dose partitioning between low-energy and high-energy CBCTs was varied (20%, 40%, 60%, and 80% for low-energy) while keeping total dose approximately equal to single-energy CBCTs, measured using an ion chamber. Noise levels and CNRs for four tissue types were investigated for dual-energy LM CBCTs in comparison with single-energy CBCTs at 80, 100, 125, and 150 kVp.

Results: The VM technique showed substantial reduction of metal artifacts at 100 keV with a 40% reduction in the background standard deviation compared to a 125 kVp single-energy scan of equal dose. The VM energy to maximize CNR for both iodine concentrations and minimize beam hardening in the metal-free object was 50 keV and 60 keV, respectively. The difference of average noise levels measured in the phantom background was 1.2% between dual-energy LM CBCTs and equivalent-dose single-energy CBCTs. CNR values in the LM CBCTs of any dose partitioning are better than those of 150 kVp single-energy CBCTs. The average CNR for four tissue types with 80% dose fraction at low-energy showed 9.0% and 4.1% improvement relative to 100 kVp and 125 kVp single-energy CBCTs, respectively. CNRs for low-contrast objects improved as dose partitioning was more heavily weighted toward low-energy (80 kVp) for LM CBCTs.

Conclusions: Dual-energy CBCT imaging techniques were implemented to synthesize VM CBCT and LM CBCTs. VM CBCT was effective at achieving metal artifact reduction. Depending on the dose-partitioning scheme, LM CBCT demonstrated the potential to improve CNR for low contrast objects compared to single-energy CBCT acquired with equivalent dose.

PubMed Disclaimer

Publication types

LinkOut - more resources