Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;6(3):945-58.
doi: 10.1093/mp/sss112. Epub 2012 Oct 6.

A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production

Affiliations

A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production

Bing Xu et al. Mol Plant. 2013 May.

Abstract

Plant growth requires cell wall extension. The cotton AtRD22-Like 1 gene GhRDL1, predominately expressed in elongating fiber cells, encodes a BURP domain-containing protein. Here, we show that GhRDL1 is localized in cell wall and interacts with GhEXPA1, an α-expansin functioning in wall loosening. Transgenic cotton overexpressing GhRDL1 showed an increase in fiber length and seed mass, and an enlargement of endopleura cells of ovules. Expression of either GhRDL1 or GhEXPA1 alone in Arabidopsis led to a substantial increase in seed size; interestingly, their co-expression resulted in the increased number of siliques, the nearly doubled seed mass, and the enhanced biomass production. Cotton plants overexpressing GhRDL1 and GhEXPA1 proteins produced strikingly more fruits (bolls), leading to up to 40% higher fiber yield per plant without adverse effects on fiber quality and vegetative growth. We demonstrate that engineering cell wall protein partners has a great potential in promoting plant growth and crop yield.

Keywords: BURP protein; RD22-like; biomass; cell wall; cotton fiber; crop yield; fruiting; α-expansin.

PubMed Disclaimer

Publication types

MeSH terms