Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 2;91(1):162-8.
doi: 10.1016/j.carbpol.2012.08.025. Epub 2012 Aug 16.

Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO

Affiliations

Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO

Ming-Guo Ma et al. Carbohydr Polym. .

Abstract

The purpose of this study is to develop a green strategy to synthesize the cellulose-based nanocomposites and open a new avenue to the high value-added applications of biomass. Herein, we reported a microwave-assisted ionic liquid route to the preparation of cellulose/CuO nanocomposites, which combined three major green chemistry principles: using environmentally friendly method, greener solvents, and sustainable resources. The influences of the reaction parameters including the heating time and the ratio of cellulose solution to ionic liquid on the products were discussed by X-ray powder diffraction, Fourier transform infrared spectrometry, and scanning electron microscopy. The crystallinity of CuO increased and the CuO shape changed from nanosheets to bundles and to particles with increasing heating time. The ratio of cellulose solution to ionic liquid also affected the shapes of CuO in nanocomposites. Moreover, CuO crystals were obtained by thermal treatment of the cellulose/CuO nanocomposites at 800 °C for 3 h in air.

PubMed Disclaimer

Publication types

LinkOut - more resources