Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2012;10(9):e1001397.
doi: 10.1371/journal.pbio.1001397. Epub 2012 Sep 25.

Inside the mucosal immune system

Affiliations
Comment

Inside the mucosal immune system

Jerry R McGhee et al. PLoS Biol. 2012.

Abstract

An intricate network of innate and immune cells and their derived mediators function in unison to protect us from toxic elements and infectious microbial diseases that are encountered in our environment. This vast network operates efficiently by use of a single cell epithelium in, for example, the gastrointestinal (GI) and upper respiratory (UR) tracts, fortified by adjoining cells and lymphoid tissues that protect its integrity. Perturbations certainly occur, sometimes resulting in inflammatory diseases or infections that can be debilitating and life threatening. For example, allergies in the eyes, skin, nose, and the UR or digestive tracts are common. Likewise, genetic background and environmental microbial encounters can lead to inflammatory bowel diseases (IBDs). This mucosal immune system (MIS) in both health and disease is currently under intense investigation worldwide by scientists with diverse expertise and interests. Despite this activity, there are numerous questions remaining that will require detailed answers in order to use the MIS to our advantage. In this issue of PLOS Biology, a research article describes a multi-scale in vivo systems approach to determine precisely how the gut epithelium responds to an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α), given by the intravenous route. This article reveals a previously unknown pathway in which several cell types and their secreted mediators work in unison to prevent epithelial cell death in the mouse small intestine. The results of this interesting study illustrate how in vivo systems biology approaches can be used to unravel the complex mechanisms used to protect the host from its environment.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. The gut, nasal, upper respiratory and salivary, mammary, lacrimal, and other glands consist of a single layered epithelium.
Projections of villi in the GI tract consist mainly of columnar epithelial cells (ECs), with other types including goblet and Paneth cells. Goblet cells exhibit several functions including secretion of mucins, which form a thick mucus covering. Paneth cells secrete chemokines, cytokines, and anti-microbial peptides (AMPs) termed α-defensins.
Figure 2
Figure 2. The mucosal immune system (MIS) is interconnected, enabling it to protect vast surface areas.
This is accomplished by inductive sites of organized lymphoid tissues, e.g., in the gut the Peyer's patches (PPs) and mesenteric lymph nodes (MLNs) comprise the GALT. Lumenal Ags can be easily sampled via M cells or by epithelial DCs since this surface is not covered by mucus due to an absence of goblet cells. Engested Ags in DCs trigger specific T and B cell responses in Peyer's patches and MLNs. Homing of lymphocytes expressing specific receptors helps guide their eventual entry into major effector tissues, e.g., the lamina propria of the gut, the upper respiratory (UR) tract, the female reproductive tract, or acinar regions of exocrine glands. Terminal differentiation of plasma cells producing polymeric (mainly dimeric) IgA is then transported across ECs via the pIgR for subsequent release as S-IgA Abs.
Figure 3
Figure 3. The gut epithelium exhibits several pathways that protect the integrity of this organ.
Intestinal epithelial cells (ECs) produce stem cell factor (SCF), which induces proliferation and resistance to bacterial invasion. In addition, neighboring γδ intraepithelial lymphocytes (IELs) produce keratinocyte growth factor (KGF), which also stabilizes ECs. IL-22 produced by Th17, Th22, and γδ T cells as well as natural killer (NK) and lymphoid tissue inducer (LTi) cells plays a key role in both early and late phases of innate immunity in order to maintain the EC barrier. In addition, monocyte chemotactic protein (MCP-1) produced by Paneth cells and goblet cells down-regulates migration of plasmacytoid DCs (pDCs) into the intestinal lamina propria in order to decrease TNF-α-induced EC apoptosis.

Comment on

References

    1. Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12: 5–9. - PubMed
    1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474: 327–336. - PMC - PubMed
    1. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, et al. (2012) Host-gut microbiota metabolic interactions. Science 336: 1262–1267. - PubMed
    1. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10: 159–169. - PubMed
    1. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140: 859–870. - PMC - PubMed

MeSH terms

Substances