Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Dec;404(10):2895-900.
doi: 10.1007/s00216-012-6431-7. Epub 2012 Oct 7.

Metabolic profiling of mouse cerebrospinal fluid by sheathless CE-MS

Affiliations

Metabolic profiling of mouse cerebrospinal fluid by sheathless CE-MS

Rawi Ramautar et al. Anal Bioanal Chem. 2012 Dec.

Abstract

The need for sensitive analytical technologies applicable to metabolic profiling of volume-restricted biological samples is high. Here, we demonstrate feasibility of capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (MS) with sheathless nano-electrospray interface for non-targeted profiling of ionogenic metabolites in body fluids of experimental animals. A representative mixture of the metabolites and body fluids of mice such as cerebrospinal fluid (CSF), urine and plasma were used as examples of low-volume biological samples for method evaluation. An injection volume of only 9 nL resulted in limits of detection between 0.7 and 12 nM for the metabolite mixture. The method allowed the detection of ~350 molecular features in mouse CSF (an injection volume of ca. 45 nL), while ~400 features were observed in mouse plasma and ~3,500 features in mouse urine (an injection volume of ca. 9 nL). The low-volume body fluid samples were analyzed directly after only 1:1 dilution with water, thereby fully retaining sample integrity, which is of crucial importance for non-targeted metabolic profiling. As little is known about the metabolic composition of mouse CSF, we identified a fraction of the molecular features in mouse CSF using accurate mass information, migration times, MS/MS data, and comparison with authentic standards. We conclude that sheathless CE-MS can be used for sensitive metabolic profiling of volume-restricted biological samples.

PubMed Disclaimer

LinkOut - more resources