Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(10):e46789.
doi: 10.1371/journal.pone.0046789. Epub 2012 Oct 3.

Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality

Affiliations

Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality

Wan Yang et al. PLoS One. 2012.

Abstract

Humidity has been associated with influenza's seasonality, but the mechanisms underlying the relationship remain unclear. There is no consistent explanation for influenza's transmission patterns that applies to both temperate and tropical regions. This study aimed to determine the relationship between ambient humidity and viability of the influenza A virus (IAV) during transmission between hosts and to explain the mechanisms underlying it. We measured the viability of IAV in droplets consisting of various model media, chosen to isolate effects of salts and proteins found in respiratory fluid, and in human mucus, at relative humidities (RH) ranging from 17% to 100%. In all media and mucus, viability was highest when RH was either close to 100% or below ∼50%. When RH decreased from 84% to 50%, the relationship between viability and RH depended on droplet composition: viability decreased in saline solutions, did not change significantly in solutions supplemented with proteins, and increased dramatically in mucus. Additionally, viral decay increased linearly with salt concentration in saline solutions but not when they were supplemented with proteins. There appear to be three regimes of IAV viability in droplets, defined by humidity: physiological conditions (∼100% RH) with high viability, concentrated conditions (50% to near 100% RH) with lower viability depending on the composition of media, and dry conditions (<50% RH) with high viability. This paradigm could help resolve conflicting findings in the literature on the relationship between IAV viability in aerosols and humidity, and results in human mucus could help explain influenza's seasonality in different regions.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Relationship between RH and IAV viability in (A) media with mainly salts, (B) media with salts plus proteins, and (C) mucus. Error bars denote standard deviations.
Figure 2
Figure 2. Viral decay over 3 h versus NaCl concentration in droplets consisting of four types of media.
Figure 3
Figure 3. Crystals of the four media: (A) PBS, (B) PBS+FCS, (C) DMEM, (D) DMEM+FCS. Light microscope, 100X magnified; scale bar = 20 µm.
Figure 4
Figure 4. Hypothesized relationship between RH and IAV viability in (A) droplets containing salts only and (B) droplets containing salts plus proteins.

References

    1. Viboud C, Bjrnstad ON, Smith DL, Simonsen L, Miller MA, et al. (2006) Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312: 447–451. - PubMed
    1. Alonso WJ, Viboud C, Simonsen L, Hirano EW, Daufenbach LZ, et al. (2007) Seasonality of influenza in brazil: A traveling wave from the Amazon to the subtropics. Am J Epidemiol 165: 1434–1442. - PubMed
    1. Dosseh A, Ndiaye K, Spiegel A, Sagna M, Mathiot C (2000) Epidemiological and virological influenza survey in Dakar, Senegal: 1996–1998. Am J Trop Med Hyg 62: 639–643. - PubMed
    1. Shek LP, Lee BW (2003) Epidemiology and seasonality of respiratory tract virus infections in the tropics. Paediatr Respir Rev 4: 105–111. - PubMed
    1. Moura FE, Perdigao AC, Siqueira MM (2009) Seasonality of influenza in the tropics: A distinct pattern in northeastern brazil. Am J Trop Med Hyg 81: 180–183. - PubMed

Publication types