Heteromeric p97/p97R155C complexes induce dominant negative changes in wild-type and autophagy 9-deficient Dictyostelium strains
- PMID: 23056506
- PMCID: PMC3463532
- DOI: 10.1371/journal.pone.0046879
Heteromeric p97/p97R155C complexes induce dominant negative changes in wild-type and autophagy 9-deficient Dictyostelium strains
Erratum in
-
Correction: Heteromeric p97/p97R155C Complexes Induce Dominant Negative Changes in Wild-Type and Autophagy 9-Deficient Dictyostelium strains.PLoS One. 2018 Jun 18;13(6):e0199548. doi: 10.1371/journal.pone.0199548. eCollection 2018. PLoS One. 2018. PMID: 29912958 Free PMC article.
Abstract
Heterozygous mutations in the human VCP (p97) gene cause autosomal-dominant IBMPFD (inclusion body myopathy with early onset Paget's disease of bone and frontotemporal dementia), ALS14 (amyotrophic lateral sclerosis with or without frontotemporal dementia) and HSP (hereditary spastic paraplegia). Most prevalent is the R155C point mutation. We studied the function of p97 in the social amoeba Dictyostelium discoideum and have generated strains that ectopically express wild-type (p97) or mutant p97 (p97(R155C)) fused to RFP in AX2 wild-type and autophagy 9 knock-out (ATG9(KO)) cells. Native gel electrophoresis showed that both p97 and p97(R155C) assemble into hexamers. Co-immunoprecipitation studies revealed that endogenous p97 and p97(R155C)-RFP form heteromers. The mutant strains displayed changes in cell growth, phototaxis, development, proteasomal activity, ubiquitinylated proteins, and ATG8(LC3) indicating mis-regulation of multiple essential cellular processes. Additionally, immunofluorescence analysis revealed an increase of protein aggregates in ATG9(KO)/p97(R155C)-RFP and ATG9(KO) cells. They were positive for ubiquitin in both strains, however, solely immunoreactive for p97 in the ATG9(KO) mutant. A major finding is that the expression of p97(R155C)-RFP in the ATG9(KO) strain partially or fully rescued the pleiotropic phenotype. We also observed dose-dependent effects of p97 on several cellular processes. Based on findings in the single versus the double mutants we propose a novel mode of p97 interaction with the core autophagy protein ATG9 which is based on mutual inhibition.
Conflict of interest statement
Figures
References
-
- Schröder R, Watts GD, Mehta SG, Evert BO, Broich P, et al. (2005) Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Annals of Neurology 57: 457–461. - PubMed
-
- Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, et al. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36: 377–381. - PubMed
-
- Djamshidian A, Schaefer J, Haubenberger D, Stogmann E, Zimprich F, et al. (2009) A novel mutation in the VCP gene (G157R) in a German family with inclusion-body myopathy with Paget disease of bone and frontotemporal dementia. Muscle Nerve 39: 389–391. - PubMed
-
- Stojkovic T, Hammouda el H, Richard P, Lopez de Munain A, Ruiz-Martinez J, et al. (2009) Clinical outcome in 19 French and Spanish patients with valosin-containing protein myopathy associated with Paget’s disease of bone and frontotemporal dementia. Neuromuscul Disord 19: 316–323. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous
